Cover times, blanket times, and majorizing measures

We exhibit a strong connection between cover times of graphs, Gaussian processes, and Talagrand's theory of majorizing measures. In particular, we show that the cover time of any graph G is equivalent, up to universal constants, to the square of the expected maximum of the Gaussian free field on G, scaled by the number of edges in G. This allows us to resolve a number of open questions. We give a deterministic polynomial-time algorithm that computes the cover time to within an O(1) factor for any graph, answering a question of Aldous and Fill (1994). We also positively resolve the blanket time conjectures of Winkler and Zuckerman (1996), showing that for any graph, the blanket and cover times are within an O(1) factor. The best previous approximation factor for both these problems was O((log log n)2) for n-vertex graphs, due to Kahn, Kim, Lovasz, and Vu (2000).

[1]  V. Climenhaga Markov chains and mixing times , 2013 .

[2]  Mohammed Abdullah,et al.  The Cover Time of Random Walks on Graphs , 2012, ArXiv.

[3]  D. Spielman Algorithms, Graph Theory, and Linear Equations in Laplacian Matrices , 2011 .

[4]  Yuval Peres,et al.  The Evolution of the Cover Time , 2010, Combinatorics, Probability and Computing.

[5]  Uriel Feige,et al.  Deterministic approximation for the cover time of trees , 2009, ArXiv.

[6]  Alan M. Frieze,et al.  The cover time of the giant component of a random graph , 2008, Random Struct. Algorithms.

[7]  Nikhil Srivastava,et al.  Graph sparsification by effective resistances , 2008, SIAM J. Comput..

[8]  Jay Rosen,et al.  Markov Processes, Gaussian Processes, and Local Times: Contents , 2006 .

[9]  M. Marcus,et al.  Markov Processes, Gaussian Processes, and Local Times: Markov processes and local times , 2006 .

[10]  M. Talagrand The Generic chaining : upper and lower bounds of stochastic processes , 2005 .

[11]  M. Talagrand The Generic Chaining , 2005 .

[12]  Artem Zvavitch,et al.  Supremum of a Process in Terms of Trees , 2003 .

[13]  M. Marcus,et al.  Gaussian Processes and Local Times of Symmetric Lévy Processes , 2006, math/0607672.

[14]  A. Dembo,et al.  Cover times for Brownian motion and random walks in two dimensions , 2001, math/0107191.

[15]  M. Talagrand Majorizing measures without measures , 2001 .

[16]  M. Ledoux The concentration of measure phenomenon , 2001 .

[17]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[18]  H. Kaspi,et al.  A Ray-Knight theorem for symmetric Markov processes , 2000 .

[19]  László Lovász,et al.  The cover time, the blanket time, and the Matthews bound , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[20]  O. Schramm,et al.  On the Cover Time of Planar Graphs , 2000, math/0002034.

[21]  S. Janson Gaussian Hilbert Spaces , 1997 .

[22]  Peter Winkler,et al.  Multiple cover time , 1996, Random Struct. Algorithms.

[23]  M. Talagrand Majorizing measures: the generic chaining , 1996 .

[24]  Uriel Feige,et al.  A Tight Lower Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[25]  M. Talagrand Embedding Subspaces of L p in ℓ p N , 1995 .

[26]  Nathalie Eisenbaum Une version sans conditionnement du theoreme d’isomorphisme de Dynkin , 1995 .

[27]  Uriel Feige,et al.  A Tight Upper Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[28]  M. Talagrand Constructions of majorizing measures Bernoulli processes and cotype , 1994, math/9406216.

[29]  M. Randic,et al.  Resistance distance , 1993 .

[30]  M. Marcus,et al.  Sample Path Properties of the Local Times of Strongly Symmetric Markov Processes Via Gaussian Processes , 1992 .

[31]  Russell Lyons,et al.  Random Walks, Capacity and Percolation on Trees , 1992 .

[32]  P. Gács,et al.  Algorithms , 1992 .

[33]  D. Aldous Random walk covering of some special trees , 1991 .

[34]  D. Aldous Threshold limits for cover times , 1991 .

[35]  P. Tetali Random walks and the effective resistance of networks , 1991 .

[36]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[37]  David Zuckerman,et al.  A technique for lower bounding the cover time , 1990, STOC '90.

[38]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 1989, STOC '89.

[39]  D. Aldous Probability Approximations via the Poisson Clumping Heuristic , 1988 .

[40]  Andrei Z. Broder,et al.  Bounds on the cover time , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[41]  P. Matthews Covering Problems for Markov Chains , 1988 .

[42]  M. Talagrand Regularity of gaussian processes , 1987 .

[43]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[44]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[45]  E. Dynkin,et al.  Gaussian and non-Gaussian random fields associated with Markov processes , 1984 .

[46]  E. Dynkin Local Times and Quantum Fields , 1984 .

[47]  D. Aldous Markov chains with almost exponential hitting times , 1982 .

[48]  Richard J. Lipton,et al.  Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[49]  J. Biggins Chernoff's theorem in the branching random walk , 1977, Journal of Applied Probability.

[50]  X. Fernique Regularite des trajectoires des fonctions aleatoires gaussiennes , 1975 .

[51]  X. Fernique,et al.  Ecole D'Ete de Probabilites de Saint-Flour Iv 1974 , 1975 .

[52]  X. Fernique,et al.  Régularité de processus gaussiens , 1971 .

[53]  R. Dudley The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .

[54]  D. Ray Sojourn times of diffusion processes , 1963 .

[55]  F. Knight,et al.  Random walks and a sojourn density process of Brownian motion , 1963 .

[56]  George A. Campbell Cisoidal oscillations , 1911, Proceedings of the American Institute of Electrical Engineers.

[57]  L. Asz Random Walks on Graphs: a Survey , 2022 .