Simulated Method of Moments Estimation for Copula-Based Multivariate Models

This article considers the estimation of the parameters of a copula via a simulated method of moments (MM) type approach. This approach is attractive when the likelihood of the copula model is not known in closed form, or when the researcher has a set of dependence measures or other functionals of the copula that are of particular interest. The proposed approach naturally also nests MM and generalized method of moments estimators. Drawing on results for simulation-based estimation and on recent work in empirical copula process theory, we show the consistency and asymptotic normality of the proposed estimator, and obtain a simple test of overidentifying restrictions as a specification test. The results apply to both iid and time series data. We analyze the finite-sample behavior of these estimators in an extensive simulation study. We apply the model to a group of seven financial stock returns and find evidence of statistically significant tail dependence, and mild evidence that the dependence between these assets is stronger in crashes than booms. Supplementary materials for this article are available online.

[1]  B. McCarl,et al.  Economics , 1870, The Indian medical gazette.

[2]  T. Forshaw Everything you always wanted to know , 1977 .

[3]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[4]  S. Csörgo Strong approximation of empirical kac processes , 1981 .

[5]  M. E. Johnson,et al.  A Family of Distributions for Modelling Non‐Elliptically Symmetric Multivariate Data , 1981 .

[6]  W. Newey,et al.  Generalized method of moments specification testing , 1985 .

[7]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[8]  C. Genest Frank's family of bivariate distributions , 1987 .

[9]  F. Wolak Testing inequality constraints in linear econometric models , 1989 .

[10]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[11]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[12]  Frank A. Wolak,et al.  Local and Global Testing of Linear and Nonlinear Inequality Constraints in Nonlinear Econometric Models , 1989, Econometric Theory.

[13]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[14]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[15]  Donald W. K. Andrews,et al.  Empirical Process Methods in Econometrics , 1993 .

[16]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[17]  Daniel B. Nelson,et al.  ARCH MODELS a , 1994 .

[18]  Tim Bollerslev,et al.  Chapter 49 Arch models , 1994 .

[19]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[20]  C. Gouriéroux,et al.  Two-stage generalized moment method with applications to regressions with heteroscedasticity of unknown form , 1996 .

[21]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[22]  E. Britton,et al.  The Inflation Report projections: understanding the fan chart , 1997 .

[23]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[24]  H. Joe Multivariate models and dependence concepts , 1998 .

[25]  K. Judd Numerical methods in economics , 1998 .

[26]  R. Nelsen An Introduction to Copulas , 1998 .

[27]  Whitney K. Newey,et al.  LARGE SAMPLE ESTIMATION AND HYPOTHESIS , 1999 .

[28]  Alastair R. Hall,et al.  Covariance Matrix Estimation and the Power of the Overidentifying Restrictions Test , 2000 .

[29]  Jason P. Fine,et al.  On association in a copula with time transformations , 2000 .

[30]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[31]  D. Andrews Testing When a Parameter Is on the Boundary of the Maintained Hypothesis , 2001 .

[32]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[33]  Alastair R. Hall,et al.  The Large Sample Behaviour of the Generalized Method of Moments Estimator in Misspecified Models , 2003 .

[34]  Alastair R. Hall,et al.  Generalized Method of Moments , 2005 .

[35]  J. Rosenberg,et al.  A General Approach to Integrated Risk Management with Skewed, Fat-Tailed Risk , 2004 .

[36]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[37]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[38]  E. Luciano,et al.  Copula methods in finance , 2004 .

[39]  H. Tsukahara,et al.  Semiparametric estimation in copula models , 2005 .

[40]  J. Kalbfleisch,et al.  Maximization by Parts in Likelihood Inference , 2005 .

[41]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[42]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[43]  Andrew J. Patton Estimation of multivariate models for time series of possibly different lengths , 2006 .

[44]  Xiaohong Chen,et al.  Efficient Estimation of Semiparametric Multivariate Copula Models Efficient Estimation of Semiparametric Multivariate Copula Models * , 2004 .

[45]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[46]  Bjarne Brendstrup,et al.  Semiparametric identification and estimation in multi-object, English auctions , 2007 .

[47]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[48]  Gunky Kim,et al.  Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..

[49]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[50]  C. Ai,et al.  A semiparametric estimation of the optimal hedge ratio , 2007 .

[51]  Salim Bouzebda,et al.  Strong approximation of empirical copula processes by Gaussian processes , 2008, 0811.3330.

[52]  H. Manner,et al.  Dynamic stochastic copula models: Estimation, inference and applications , 2012 .

[53]  Xiaohong Chen,et al.  STATISTICAL INFERENCE FOR MULTIVARIATE RESIDUAL COPULA OF GARCH MODELS , 2009 .

[54]  S. Bonhomme,et al.  Assessing the Equalizing Force of Mobility Using Short Panels: France, 1990–2000 , 2008 .

[55]  R. Kohn,et al.  Modeling Dependence Using Skew T Copulas: Bayesian Inference and Applications , 2010 .

[56]  C. Czado,et al.  Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence , 2010 .

[57]  B. Rémillard Goodness-of-Fit Tests for Copulas of Multivariate Time Series , 2010 .

[58]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[59]  R. Khabibullin,et al.  An algorithm for constructing high dimensional distributions from distributions of lower dimension , 2014 .