The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease

Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.

[1]  F. Opperdoes,et al.  The Trypanosoma cruzi Proteome , 2005, Science.

[2]  Heather J Munden,et al.  The Genome of the Kinetoplastid Parasite, Leishmania major , 2005, Science.

[3]  David M. A. Martin,et al.  The Genome of the African Trypanosome Trypanosoma brucei , 2005, Science.

[4]  Daniel Nilsson,et al.  Comparative Genomics of Trypanosomatid Parasitic Protozoa , 2005, Science.

[5]  大房 健 基礎講座 電気泳動(Electrophoresis) , 2005 .

[6]  M. Briones,et al.  Comparative analysis of genomic sequences suggests that Trypanosoma cruzi CL Brener contains two sets of non-intercalated repeats of satellite DNA that correspond to T. cruzi I and T. cruzi II types. , 2005, Molecular and biochemical parasitology.

[7]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[8]  Pauline Ward,et al.  Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote , 2004, BMC Genomics.

[9]  H. Krokan,et al.  Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair. , 2004, Journal of molecular biology.

[10]  A. MacLeod,et al.  Human infectivity trait in Trypanosoma brucei: stability, heritability and relationship to sra expression , 2004, Parasitology.

[11]  L. Vanhamme,et al.  Antigenic variation in Trypanosoma brucei: facts, challenges and mysteries. , 2004, Current opinion in microbiology.

[12]  A. Frasch,et al.  The Surface Coat of the Mammal-dwelling Infective Trypomastigote Stage of Trypanosoma cruzi Is Formed by Highly Diverse Immunogenic Mucins* , 2004, Journal of Biological Chemistry.

[13]  Samuel V. Angiuoli,et al.  Gene synteny and evolution of genome architecture in trypanosomatids. , 2004, Molecular and biochemical parasitology.

[14]  J. C. Hines,et al.  Mitochondrial DNA ligase in Crithidia fasciculata. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Donelson,et al.  Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi. , 2004, Molecular and biochemical parasitology.

[16]  A. Frasch,et al.  Differential accumulation of mutations localized in particular domains of the mucin genes expressed in the vertebrate host stage of Trypanosoma cruzi. , 2004, Molecular and biochemical parasitology.

[17]  P. T. Englund,et al.  Trypanosoma brucei Has Two Distinct Mitochondrial DNA Polymerase β Enzymes* , 2003, Journal of Biological Chemistry.

[18]  J. Donelson,et al.  The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function. , 2003, Molecular and biochemical parasitology.

[19]  Julie Ahringer,et al.  A Genome-Wide Screen Identifies 27 Genes Involved in Transposon Silencing in C. elegans , 2003, Current Biology.

[20]  Daniel Kuhn,et al.  Protein Kinase Involved in Flagellar-Length Control , 2003, Eukaryotic Cell.

[21]  E. Cupolillo,et al.  Evaluation of Trypanosoma cruzi hybrid stocks based on chromosomal size variation. , 2003, Molecular and biochemical parasitology.

[22]  Z. Kelman,et al.  Archaea: an archetype for replication initiation studies? , 2003, Molecular microbiology.

[23]  S. Beverley,et al.  Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. , 2003, Molecular and biochemical parasitology.

[24]  S. Westenberger,et al.  Evidence for multiple hybrid groups in Trypanosoma cruzi. , 2003, International journal for parasitology.

[25]  M. Miles,et al.  Mechanism of genetic exchange in American trypanosomes , 2003, Nature.

[26]  E. Douzery,et al.  Evidence for genetic exchange and hybridization in Trypanosoma cruzi based on nucleotide sequences and molecular karyotype. , 2003, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[27]  S. Beverley Protozomics: trypanosomatid parasite genetics comes of age , 2003, Nature Reviews Genetics.

[28]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[29]  L. Symington Role of RAD52 Epistasis Group Genes in Homologous Recombination and Double-Strand Break Repair , 2002, Microbiology and Molecular Biology Reviews.

[30]  E. Vassella,et al.  Stage-specific requirement of a mitogen-activated protein kinase by Trypanosoma brucei. , 2002, Molecular biology of the cell.

[31]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[32]  Piet Borst,et al.  J‐binding protein increases the level and retention of the unusual base J in trypanosome DNA , 2002, Molecular microbiology.

[33]  F. Bringaud,et al.  Identification of non-autonomous non-LTR retrotransposons in the genome of Trypanosoma cruzi. , 2002, Molecular and biochemical parasitology.

[34]  P. T. Englund,et al.  Multiple mitochondrial DNA polymerases in Trypanosoma brucei. , 2002, Molecular cell.

[35]  N. Robinson,et al.  Ku Is Important for Telomere Maintenance, but Not for Differential Expression of Telomeric VSG Genes, in African Trypanosomes* , 2002, The Journal of Biological Chemistry.

[36]  A. Frasch,et al.  The trans-sialidase from the african trypanosome Trypanosoma brucei. , 2002, European journal of biochemistry.

[37]  Zefeng Wang,et al.  A Trypanosome Mitochondrial RNA Polymerase Is Required for Transcription and Replication* , 2002, The Journal of Biological Chemistry.

[38]  N. Biteau,et al.  A New, Expressed Multigene Family Containing a Hot Spot for Insertion of Retroelements Is Associated with Polymorphic Subtelomeric Regions of Trypanosoma brucei , 2002, Eukaryotic Cell.

[39]  W. Souza Basic cell biology of Trypanosoma cruzi. , 2002 .

[40]  Peter E. Hilsenrath,et al.  The World Health Report 2000 , 2002 .

[41]  Anindya Dutta,et al.  DNA replication in eukaryotic cells. , 2002, Annual review of biochemistry.

[42]  M. Rodrigues,et al.  DNA Sequences Encoding CD4+ and CD8+T-Cell Epitopes Are Important for Efficient Protective Immunity Induced by DNA Vaccination with a Trypanosoma cruziGene , 2001, Infection and Immunity.

[43]  C. A. Machado,et al.  Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Kelly,et al.  Trypanosoma cruzi: mucin pseudogenes organized in a tandem array. , 2001, Experimental parasitology.

[45]  V. Kickhoefer,et al.  Telomerase-Associated Protein TEP1 Is Not Essential for Telomerase Activity or Telomere Length Maintenance In Vivo , 2000, Molecular and Cellular Biology.

[46]  A. Frasch,et al.  Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. , 2000, Parasitology today.

[47]  S. Brisse,et al.  Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. , 2000, International journal for parasitology.

[48]  B. Stolf,et al.  The evolution of two Trypanosoma cruzi subgroups inferred from rRNA genes can be correlated with the interchange of American mammalian faunas in the Cenozoic and has implications to pathogenicity and host specificity. , 1999, Molecular and biochemical parasitology.

[49]  J. Ramirez,et al.  Organization of telomeric and sub-telomeric regions of chromosomes from the protozoan parasite Trypanosoma cruzi. , 1999, Molecular and biochemical parasitology.

[50]  E. Blackburn,et al.  Telomerase in kinetoplastid parasitic protozoa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Ashby References and Notes , 1999 .

[52]  A. Frasch,et al.  Structure of the glycosylphosphatidylinositol-anchor of the trans-sialidase from Trypanosoma cruzi metacyclic trypomastigote forms. , 1998, Molecular and biochemical parasitology.

[53]  S. Brisse,et al.  A phylogenetic analysis of the Trypanosoma cruzi genome project CL Brener reference strain by multilocus enzyme electrophoresis and multiprimer random amplified polymorphic DNA fingerprinting. , 1998, Molecular and biochemical parasitology.

[54]  J. F. da Silveira,et al.  Trypanosoma cruzi genome project: biological characteristics and molecular typing of clone CL Brener. , 1997, Acta tropica.

[55]  M. Ferguson The surface glycoconjugates of trypanosomatid parasites. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[56]  M I Cano,et al.  Molecular karyotype of clone CL Brener chosen for the Trypanosoma cruzi genome project. , 1995, Molecular and biochemical parasitology.

[57]  Clark Cg,et al.  Host specificity of ribosomal DNA variation in sylvatic Trypanosoma cruzi from North America. , 1994 .

[58]  AC Tose Cell , 1993, Cell.

[59]  P. Wincker,et al.  Nucleotide sequence of a representative member of a Trypanosoma cruzi dispersed gene family. , 1992, Molecular and biochemical parasitology.

[60]  C. Beard,et al.  A new member of a family of site-specific retrotransposons is present in the spliced leader RNA genes of Trypanosoma cruzi , 1991, Molecular and cellular biology.

[61]  A. Frasch,et al.  The complete sequence of a shed acute-phase antigen of Trypanosoma cruzi. , 1991, Molecular and biochemical parasitology.

[62]  K. Gull,et al.  *Author for correspondence , 2006 .

[63]  B. E. Kimmel,et al.  Ingi, a 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs , 1987, Molecular and cellular biology.

[64]  J. Schweizer,et al.  Hybrid formation between African trypanosomes during cyclical transmission , 1986, Nature.

[65]  J. S. Cordingley,et al.  Complete nucleotide sequence of an unusual mobile element from trypanosoma brucei , 1984, Cell.

[66]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[67]  J. Stephenson World health report. , 2004, Lancet.