Analysis of voltage scaling effects in the design of resilient circuits

Embora o avanco da tecnologia de semicondutores permita a fabricacao de dispositivos com atrasos de propagacao reduzidos, potencialmente habilitando o aumento da frequencia de operacao, as variacoes em processos de fabricacao modernos crescem de forma muito agressiva. Para lidar com este problema, significativas margens de atraso devem ser adicionadas ao periodo de sinais de relogio, limitando os ganhos em desempenho e a eficiencia energetica do circuito. Entre as diversas tecnicas exploradas nas ultimas decadas para amenizar esta dificuldade, tres se destacam como relevantes e promissoras, isoladas ou combinadas: a reducao da tensao de alimentacao, o uso de projeto assincrono e arquiteturas resilientes. Este trabalho investiga como a reducao de tensao de alimentacao afeta os atrasos de caminhos em circuitos digitais, e produz tres contribuicoes originais. A primeira e a definicao uma tecnica para garantir que circuitos sintetizados com um conjunto reduzido de celulas atinjam resultados comparaveis aos da biblioteca completa, mantendo a sua funcionalidade mesmo quando alimentados por tensoes reduzidas. A segunda e a composicao de um metodo para estender o suporte a niveis de tensao de alimentacao para bibliotecas de celulas padrao providas por fabicantes de CIs, atraves de novas tecnicas de caracterizacao de bibliotecas. A terceira e a analise dos efeitos do escalamento de tensao no projeto de circuitos resilientes, considerando tensoes de alimentacao superiores e inferiores a tensao de limiar dos transistores.

[1]  Melvin A. Breuer,et al.  Blade -- A Timing Violation Resilient Asynchronous Template , 2015, 2015 21st IEEE International Symposium on Asynchronous Circuits and Systems.

[2]  Peter A. Beerel,et al.  A Designer's Guide to Asynchronous VLSI , 2010 .

[3]  David Blaauw,et al.  Razor II: In Situ Error Detection and Correction for PVT and SER Tolerance , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[4]  John P. Hayes,et al.  Unveiling the ISCAS-85 Benchmarks: A Case Study in Reverse Engineering , 1999, IEEE Des. Test Comput..

[5]  Alan Chang,et al.  Slack-aware timing margin redistribution technique utilizing error avoidance flip-flops and time borrowing , 2015, 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC).

[6]  Tao Wang,et al.  Critical path monitor enabled dynamic voltage scaling for graceful degradation in sub-threshold designs , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[7]  K.A. Bowman,et al.  Energy-Efficient and Metastability-Immune Resilient Circuits for Dynamic Variation Tolerance , 2009, IEEE Journal of Solid-State Circuits.

[8]  Naveen Verma,et al.  A 65nm Sub-Vt Microcontroller with Integrated SRAM and Switched-Capacitor DC-DC Converter , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[9]  Ivan E. Sutherland,et al.  Micropipelines , 1989, Commun. ACM.

[10]  Kwen-Siong Chong,et al.  Synchronous-Logic and Asynchronous-Logic 8051 Microcontroller Cores for Realizing the Internet of Things: A Comparative Study on Dynamic Voltage Scaling and Variation Effects , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[11]  Mingoo Seok,et al.  Nanometer Device Scaling in Subthreshold Logic and SRAM , 2008, IEEE Transactions on Electron Devices.

[12]  David Blaauw,et al.  Bubble Razor: Eliminating Timing Margins in an ARM Cortex-M3 Processor in 45 nm CMOS Using Architecturally Independent Error Detection and Correction , 2013, IEEE Journal of Solid-State Circuits.

[13]  Massimo Alioto,et al.  AES architectures for minimum-energy operation and silicon demonstration in 65nm with lowest energy per encryption , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[14]  Manoj Sachdev,et al.  Efficient adaptive voltage scaling system through on-chip critical path emulation , 2004, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758).

[15]  Ragunathan Rajkumar,et al.  Energy-Aware Partitioned Fixed-Priority Scheduling for Chip Multi-processors , 2011, 2011 IEEE 17th International Conference on Embedded and Real-Time Computing Systems and Applications.

[16]  Thomas A. DeMassa,et al.  Digital Integrated Circuits , 1985, 1985 IEEE GaAs IC Symposium Technical Digest.

[17]  Deke Guo,et al.  TL-plane-based multi-core energy-efficient real-time scheduling algorithm for sporadic tasks , 2012, TACO.

[18]  Thomas J. Chaney,et al.  Q-Modules: Internally Clocked Delay-Insensitive Modules , 1988, IEEE Trans. Computers.

[19]  Dennis Sylvester,et al.  Razor-lite: A side-channel error-detection register for timing-margin recovery in 45nm SOI CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[20]  Balaram Sinharoy,et al.  POWER7: IBM's next generation server processor , 2010, 2009 IEEE Hot Chips 21 Symposium (HCS).

[21]  Peter A. Beerel,et al.  TDTB error detecting latches: Timing violation sensitivity analysis and optimization , 2015, Sixteenth International Symposium on Quality Electronic Design.

[22]  Scott Hauck,et al.  Asynchronous design methodologies: an overview , 1995, Proc. IEEE.

[23]  Luciano Lavagno,et al.  Metastability in Better-Than-Worst-Case Designs , 2014, 2014 20th IEEE International Symposium on Asynchronous Circuits and Systems.

[24]  Steven M. Nowick,et al.  MOUSETRAP: High-Speed Transition-Signaling Asynchronous Pipelines , 2007, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[25]  David Harris,et al.  CMOS VLSI Design: A Circuits and Systems Perspective , 2004 .

[26]  Steven M. Nowick,et al.  High-Performance Asynchronous Pipelines: An Overview , 2011, IEEE Design & Test of Computers.

[27]  Melvin A. Breuer,et al.  Performance Optimization and Analysis of Blade Designs under Delay Variability , 2015, 2015 21st IEEE International Symposium on Asynchronous Circuits and Systems.

[28]  A. C. Deng,et al.  Generic linear RC network model for digital CMOS circuits , 1989, IEEE International Symposium on Circuits and Systems,.

[29]  Moti Medina,et al.  Digital Logic Design - A Rigorous Approach , 2012 .

[30]  John Sartori,et al.  Designing a processor from the ground up to allow voltage/reliability tradeoffs , 2010, HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture.

[31]  F. Brglez,et al.  A neutral netlist of 10 combinational benchmark circuits and a target translator in FORTRAN , 1985 .

[32]  Trevor Mudge,et al.  Razor: a low-power pipeline based on circuit-level timing speculation , 2003, Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36..

[33]  A. Chandrakasan,et al.  A 180-mV subthreshold FFT processor using a minimum energy design methodology , 2005, IEEE Journal of Solid-State Circuits.

[34]  Steven A. Vitale Low voltage devices and circuits for energy-starved systems , 2015, 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S).

[35]  Gabi Zodik Future Technologies Supporting the Convergence of Mobile, Wearables, and IoT , 2015, 2015 2nd ACM International Conference on Mobile Software Engineering and Systems.

[36]  David Bryan,et al.  Combinational profiles of sequential benchmark circuits , 1989, IEEE International Symposium on Circuits and Systems,.