Constrained Optimal Input Signal Design for Data-Centric Estimation Methods

This technical note examines the design of constrained input signals for data-centric estimation methods which systematically generate a local function approximation from a database of regressors at a current operating point. The proposed method addresses the optimal distribution of regressor vectors under constraints for a linear time-invariant (LTI) system. The resulting nonconvex optimization problems are solved using semidefinite relaxation methods. Numerical examples illustrate the benefits and usefulness of the proposed input signal design formulations.

[1]  Daniel E. Rivera,et al.  Optimal input signal design for data-centric estimation methods , 2013, 2013 American Control Conference.

[2]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[3]  Nikolaos V. Sahinidis,et al.  Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons , 2011, Math. Program..

[4]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[5]  Hyunjin Lee,et al.  Constrained multisine input signals for plant-friendly identification of chemical process systems , 2009 .

[6]  Y. Nesterov Global quadratic optimization via conic relaxation , 1998 .

[7]  Daniel E. Rivera,et al.  A 'Model-on-Demand' identification methodology for non-linear process systems , 2001 .

[8]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[9]  Jacob Roll,et al.  DIRECT WEIGHT OPTIMIZATION FOR APPROXIMATELY LINEAR FUNCTIONS: OPTIMALITY AND DESIGN , 2006 .

[10]  Daniel E. Rivera,et al.  A control engineering approach for designing an optimized treatment plan for fibromyalgia , 2011, Proceedings of the 2011 American Control Conference.

[11]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[12]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[13]  Hyunjin Lee,et al.  High-Purity Distillation , 2007, IEEE Control Systems.

[14]  Jacob Roll,et al.  Nonlinear system identification via direct weight optimization , 2005, Autom..

[15]  Manfred R. Schroeder,et al.  Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[16]  Daniel E. Rivera,et al.  Towards Patient-Friendly Input Signal Design for Optimized Pain Treatment Interventions , 2012 .

[17]  George Cybenko,et al.  Just-in-Time Learning and Estimation , 1996 .

[18]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[19]  Er-Wei Bai,et al.  Recursive Direct Weight Optimization in Nonlinear System Identification: A Minimal Probability Approach , 2007, IEEE Transactions on Automatic Control.

[20]  Daniel E. Rivera,et al.  Model-on-Demand predictive control for nonlinear hybrid systems with application to adaptive behavioral interventions , 2010, 49th IEEE Conference on Decision and Control (CDC).

[21]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[22]  Lennart Ljung,et al.  Perspectives on system identification , 2010, Annu. Rev. Control..

[23]  Raghunathan Rengaswamy,et al.  Plant Friendly Input Design: Convex Relaxation and Quality , 2011, IEEE Transactions on Automatic Control.

[24]  Anders Stenman,et al.  Model on Demand: Algorithms, Analysis and Applications , 1999 .

[25]  Kurt M. Anstreicher,et al.  Institute for Mathematical Physics Semidefinite Programming versus the Reformulation–linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming Semidefinite Programming versus the Reformulation-linearization Technique for Nonconvex Quadratically Constrained , 2022 .

[26]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[27]  Samuel Burer,et al.  Globally solving nonconvex quadratic programming problems via completely positive programming , 2011, Mathematical Programming Computation.

[28]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[29]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[30]  Y. Ye,et al.  Semidefinite programming relaxations of nonconvex quadratic optimization , 2000 .

[31]  Yinyu Ye,et al.  Approximating quadratic programming with bound and quadratic constraints , 1999, Math. Program..

[32]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[33]  Ian R. Manchester,et al.  Input design for system identification via convex relaxation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[34]  W. D. T. Davies,et al.  System identification for self-adaptive control , 1970 .

[35]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[36]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[37]  José Luis Guzmán,et al.  Perspectives on control-relevant identification through the use of interactive tools , 2013 .

[38]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[39]  Zhi-Quan Luo,et al.  Semidefinite Relaxation of Quadratic Optimization Problems , 2010, IEEE Signal Processing Magazine.

[40]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[41]  Daniel E. Rivera,et al.  A data-centric system identification approach to input signal design for Hammerstein systems , 2013, 52nd IEEE Conference on Decision and Control.