A 13.56-MHz RFID System Based on Organic Transponders

RFID tags based on organic transistors are described, discussing in detail the IC blocks used to build the logic and the radio. Tags energized and read out at 13.56 MHz, de facto standard frequency for item-level identification, have been tested and enabled for the first time multiple-object identification, using different 6-bit codes. A complete 64-bit transponder, the most complex organic RFID tag reported to date, operates at 125 kHz and employs 1938 transistors

[1]  J. Rasul,et al.  Flip chip on paper assembly utilizing anisotropic conductive adhesive , 2002, 52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345).

[2]  Gerwin H. Gelinck,et al.  High-performance solution-processed polymer ferroelectric field-effect transistors , 2005 .

[3]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[4]  E. Cantatore,et al.  Plastic transistors in active-matrix displays , 2001, Nature.

[5]  Gerwin H. Gelinck,et al.  High-performance all-polymer integrated circuits , 2000 .

[6]  Ananth Dodabalapur,et al.  13.56 MHz organic transistor based rectifier circuits for RFID tags , 2005 .

[7]  Gerwin H. Gelinck,et al.  A 13.56MHz RFID System based on Organic Transponders , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[8]  Theory of the field-effect mobility in amorphous organic transistors , 2008 .

[9]  E. Cantatore,et al.  Transistor operation and circuit performance in organic electronics , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[10]  E. van Veenendaal,et al.  A flexible 240/spl times/320-pixel display with integrated row drivers manufactured in organic electronics , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[11]  Markus Böhm,et al.  Printable electronics for polymer RFID applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[12]  Gerwin H. Gelinck,et al.  From transistors to large-scale integrated circuits , 2006 .

[13]  Klaus Müllen,et al.  A Soluble Pentacene Precursor: Synthesis, Solid‐State Conversion into Pentacene and Application in a Field‐Effect Transistor , 1999 .

[14]  Wolfgang Clemens,et al.  Fully printed integrated circuits from solution processable polymers , 2004 .

[15]  Richard H. Friend,et al.  Formation of the accumulation layer in polymer field-effect transistors , 2003 .

[16]  François Krummenacher,et al.  A model for /spl mu/-power rectifier analysis and design , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  C. M. Hart,et al.  Low-cost all-polymer integrated circuits , 1998, Proceedings of the 24th European Solid-State Circuits Conference.

[18]  Vivek Subramanian,et al.  Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices , 2005, Proceedings of the IEEE.

[19]  C. Pacha,et al.  Polymer gate dielectric pentacene TFTs and circuits on flexible substrates , 2002, Digest. International Electron Devices Meeting,.

[20]  E. Cantatore,et al.  Circuit yield of organic integrated electronics , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[21]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[22]  G. Gelinck,et al.  Polymeric integrated circuits: fabrication and first characterisation , 2002, Digest. International Electron Devices Meeting,.

[23]  Kris Myny,et al.  50 MHz rectifier based on an organic diode , 2005, Nature materials.