Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation

Abstract The log-conformation reformulation, originally proposed by Fattal and Kupferman (2004), allows computing incompressible viscoelastic problems with high Weissenberg numbers which are impossible to solve with the typical three-field formulation. By following this approach, in this work we develop a new stabilized finite element formulation based on the logarithmic reformulation using the Variational Multiscale (VMS) method as stabilization technique, together with a modified log-conformation formulation. Our approach follows the term-by-term stabilization proposed by Castillo and Codina (2014) for the standard formulation, which is more effective when there are stress singularities. The formulation can be used when the relaxation parameter is set to zero, and permits a direct steady numerical resolution. The formulation is validated in the classical benchmark flow past a cylinder and in the well-known planar contraction 4:1, achieving very accurate, stable and mesh independent results for highly elastic fluids.

[1]  N. Phan-Thien,et al.  Galerkin/least-square finite-element methods for steady viscoelastic flows , 1999 .

[2]  L. Collins,et al.  Numerical approach to simulating turbulent flow of a viscoelastic polymer solution , 2003 .

[3]  Marco Dressler,et al.  Computational Rheology , 2002 .

[4]  F. Pinho,et al.  Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows , 2000 .

[5]  Yong Lak Joo,et al.  Highly parallel time integration of viscoelastic flows , 2001 .

[6]  H. Damanik,et al.  A monolithic FEM approach for the log-conformation reformulation (LCR) of viscoelastic flow problems , 2010 .

[7]  F. Pinho,et al.  Dynamics of high-Deborah-number entry flows: a numerical study , 2011, Journal of Fluid Mechanics.

[8]  R. Codina,et al.  Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem , 2014 .

[10]  R. Codina Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .

[11]  Xikui Li,et al.  Numerical modeling of viscoelastic flows using equal low-order finite elements , 2010 .

[12]  M. A. Alves,et al.  Stabilization of an open-source finite-volume solver for viscoelastic fluid flows , 2017 .

[13]  van den Bhaa Ben Brule,et al.  Simulation of viscoelastic flows using Brownian configuration fields , 1997 .

[14]  Youngdon Kwon,et al.  Recent results on the analysis of viscoelastic constitutive equations , 2002 .

[15]  M. Graham DRAG REDUCTION IN TURBULENT FLOW OF POLYMER SOLUTIONS , 2004 .

[16]  S. Richardson,et al.  Explicit numerical simulation of time-dependent viscoelastic flow problems by a finite element/finite volume method , 1994 .

[17]  R. Codina Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales , 2008 .

[18]  Raanan Fattal,et al.  Constitutive laws for the matrix-logarithm of the conformation tensor , 2004 .

[19]  K. Ahn,et al.  High-resolution finite element simulation of 4:1 planar contraction flow of viscoelastic fluid , 2005 .

[20]  F. Pinho,et al.  The kernel-conformation constitutive laws , 2011 .

[21]  F. Pinho,et al.  The log-conformation tensor approach in the finite-volume method framework , 2009 .

[22]  Raanan Fattal,et al.  Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation , 2005 .

[23]  Raz Kupferman,et al.  A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow , 2001, SIAM J. Sci. Comput..

[24]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[25]  Ramon Codina,et al.  First, second and third order fractional step methods for the three-field viscoelastic flow problem , 2015, J. Comput. Phys..

[26]  JaeHyuk Kwack,et al.  A three-field formulation for incompressible viscoelastic fluids , 2010 .

[27]  Fernando T. Pinho,et al.  The flow of viscoelastic fluids past a cylinder : finite-volume high-resolution methods , 2001 .

[28]  J. Hattel,et al.  Vortex behavior of the Oldroyd-B fluid in the 4-1 planar contraction simulated with the streamfunction–log-conformation formulation , 2016 .

[29]  J. Hattel,et al.  Robust simulations of viscoelastic flows at high Weissenberg numbers with the streamfunction/log-conformation formulation , 2015 .

[30]  R. Codina,et al.  Stabilized stress–velocity–pressure finite element formulations of the Navier–Stokes problem for fluids with non-linear viscosity , 2014 .

[31]  M. Renardy,et al.  Symmetric factorization of the conformation tensor in viscoelastic fluid models , 2010, 1006.3488.

[32]  Raanan Fattal,et al.  Flow of viscoelastic fluids past a cylinder at high Weissenberg number : stabilized simulations using matrix logarithms , 2005 .

[33]  M. F. Webster,et al.  Recovery and stress-splitting schemes for viscoelastic flows , 1998 .

[34]  Sajal K. Das,et al.  FIRST , 2018, Definitions.

[35]  A. I. Leonov Analysis of simple constitutive equations for viscoelastic liquids , 1992 .

[36]  P. Saramito On a modified non-singular log-conformation formulation for Johnson–Segalman viscoelastic fluids , 2014 .

[37]  R. Codina,et al.  Finite element approximation of the viscoelastic flow problem: a non-residual based stabilized formulation , 2017 .

[38]  Ramon Codina Finite Element Approximation of the Three-Field Formulation of the Stokes Problem Using Arbitrary Interpolations , 2008, SIAM J. Numer. Anal..

[39]  R. Codina,et al.  Numerical analysis of a stabilized finite element approximation for the three-field linearized viscoelastic fluid problem using arbitrary interpolations , 2016 .

[40]  R. G. Owens,et al.  A locally-upwinded spectral technique (LUST) for viscoelastic flows , 2002 .

[41]  A. Groisman,et al.  Elastic turbulence in a polymer solution flow , 2000, Nature.

[42]  André Fortin,et al.  A comparison of four implementations of the log-conformation formulation for viscoelastic fluid flows , 2009 .

[43]  R. Frias,et al.  Dynamics of high-Deborah-number entry flows: a numerical study , 2011 .

[44]  M. Behr,et al.  Fully-implicit log-conformation formulation of constitutive laws , 2014, 1406.6988.

[45]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[46]  T. Phillips,et al.  Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method , 1999 .

[47]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[48]  Marek Behr,et al.  A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation formulation , 2007 .

[49]  P. Nithiarasu A fully explicit characteristic based split (CBS) scheme for viscoelastic flow calculations , 2004 .

[50]  R. Codina,et al.  Time-dependent semi-discrete analysis of the viscoelastic fluid flow problem using a variational multiscale stabilised formulation , 2019 .