Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation
暂无分享,去创建一个
Ramon Codina | Joan Baiges | Ernesto Castillo | R. Codina | E. Castillo | J. Baiges | Laura Moreno | L. Moreno
[1] N. Phan-Thien,et al. Galerkin/least-square finite-element methods for steady viscoelastic flows , 1999 .
[2] L. Collins,et al. Numerical approach to simulating turbulent flow of a viscoelastic polymer solution , 2003 .
[3] Marco Dressler,et al. Computational Rheology , 2002 .
[4] F. Pinho,et al. Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows , 2000 .
[5] Yong Lak Joo,et al. Highly parallel time integration of viscoelastic flows , 2001 .
[6] H. Damanik,et al. A monolithic FEM approach for the log-conformation reformulation (LCR) of viscoelastic flow problems , 2010 .
[7] F. Pinho,et al. Dynamics of high-Deborah-number entry flows: a numerical study , 2011, Journal of Fluid Mechanics.
[8] R. Codina,et al. Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem , 2014 .
[10] R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .
[11] Xikui Li,et al. Numerical modeling of viscoelastic flows using equal low-order finite elements , 2010 .
[12] M. A. Alves,et al. Stabilization of an open-source finite-volume solver for viscoelastic fluid flows , 2017 .
[13] van den Bhaa Ben Brule,et al. Simulation of viscoelastic flows using Brownian configuration fields , 1997 .
[14] Youngdon Kwon,et al. Recent results on the analysis of viscoelastic constitutive equations , 2002 .
[15] M. Graham. DRAG REDUCTION IN TURBULENT FLOW OF POLYMER SOLUTIONS , 2004 .
[16] S. Richardson,et al. Explicit numerical simulation of time-dependent viscoelastic flow problems by a finite element/finite volume method , 1994 .
[17] R. Codina. Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales , 2008 .
[18] Raanan Fattal,et al. Constitutive laws for the matrix-logarithm of the conformation tensor , 2004 .
[19] K. Ahn,et al. High-resolution finite element simulation of 4:1 planar contraction flow of viscoelastic fluid , 2005 .
[20] F. Pinho,et al. The kernel-conformation constitutive laws , 2011 .
[21] F. Pinho,et al. The log-conformation tensor approach in the finite-volume method framework , 2009 .
[22] Raanan Fattal,et al. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation , 2005 .
[23] Raz Kupferman,et al. A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow , 2001, SIAM J. Sci. Comput..
[24] R. Codina. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .
[25] Ramon Codina,et al. First, second and third order fractional step methods for the three-field viscoelastic flow problem , 2015, J. Comput. Phys..
[26] JaeHyuk Kwack,et al. A three-field formulation for incompressible viscoelastic fluids , 2010 .
[27] Fernando T. Pinho,et al. The flow of viscoelastic fluids past a cylinder : finite-volume high-resolution methods , 2001 .
[28] J. Hattel,et al. Vortex behavior of the Oldroyd-B fluid in the 4-1 planar contraction simulated with the streamfunction–log-conformation formulation , 2016 .
[29] J. Hattel,et al. Robust simulations of viscoelastic flows at high Weissenberg numbers with the streamfunction/log-conformation formulation , 2015 .
[30] R. Codina,et al. Stabilized stress–velocity–pressure finite element formulations of the Navier–Stokes problem for fluids with non-linear viscosity , 2014 .
[31] M. Renardy,et al. Symmetric factorization of the conformation tensor in viscoelastic fluid models , 2010, 1006.3488.
[32] Raanan Fattal,et al. Flow of viscoelastic fluids past a cylinder at high Weissenberg number : stabilized simulations using matrix logarithms , 2005 .
[33] M. F. Webster,et al. Recovery and stress-splitting schemes for viscoelastic flows , 1998 .
[34] Sajal K. Das,et al. FIRST , 2018, Definitions.
[35] A. I. Leonov. Analysis of simple constitutive equations for viscoelastic liquids , 1992 .
[36] P. Saramito. On a modified non-singular log-conformation formulation for Johnson–Segalman viscoelastic fluids , 2014 .
[37] R. Codina,et al. Finite element approximation of the viscoelastic flow problem: a non-residual based stabilized formulation , 2017 .
[38] Ramon Codina. Finite Element Approximation of the Three-Field Formulation of the Stokes Problem Using Arbitrary Interpolations , 2008, SIAM J. Numer. Anal..
[39] R. Codina,et al. Numerical analysis of a stabilized finite element approximation for the three-field linearized viscoelastic fluid problem using arbitrary interpolations , 2016 .
[40] R. G. Owens,et al. A locally-upwinded spectral technique (LUST) for viscoelastic flows , 2002 .
[41] A. Groisman,et al. Elastic turbulence in a polymer solution flow , 2000, Nature.
[42] André Fortin,et al. A comparison of four implementations of the log-conformation formulation for viscoelastic fluid flows , 2009 .
[43] R. Frias,et al. Dynamics of high-Deborah-number entry flows: a numerical study , 2011 .
[44] M. Behr,et al. Fully-implicit log-conformation formulation of constitutive laws , 2014, 1406.6988.
[45] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[46] T. Phillips,et al. Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method , 1999 .
[47] 王东东,et al. Computer Methods in Applied Mechanics and Engineering , 2004 .
[48] Marek Behr,et al. A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation formulation , 2007 .
[49] P. Nithiarasu. A fully explicit characteristic based split (CBS) scheme for viscoelastic flow calculations , 2004 .
[50] R. Codina,et al. Time-dependent semi-discrete analysis of the viscoelastic fluid flow problem using a variational multiscale stabilised formulation , 2019 .