Non-coding genetic variation in cancer.

[1]  Nicholas A. Sinnott-Armstrong,et al.  Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer , 2016, Nature Genetics.

[2]  Martin S. Taylor,et al.  Mutational Biases Drive Elevated Rates of Substitution at Regulatory Sites across Cancer Types , 2016, PLoS genetics.

[3]  Tatsunori B. Hashimoto,et al.  A synergistic DNA logic predicts genome-wide chromatin accessibility , 2016, Genome research.

[4]  Renata Walewska,et al.  Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory networks , 2016, Nature Communications.

[5]  A. Gonzalez-Perez,et al.  OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations , 2016, Genome Biology.

[6]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[7]  Anushi Shah,et al.  Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes , 2016, Nature.

[8]  Ekta Khurana Cancer genomics: Hard-to-reach repairs , 2016, Nature.

[9]  Keith A. Boroevich,et al.  Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer , 2016, Nature Genetics.

[10]  Aaron T. L. Lun,et al.  Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations , 2016, Genome research.

[11]  M. Gerstein,et al.  Role of non-coding sequence variants in cancer , 2016, Nature Reviews Genetics.

[12]  Daniel S. Day,et al.  Activation of proto-oncogenes by disruption of chromosome neighborhoods , 2015, Science.

[13]  Radhakrishnan Sabarinathan,et al.  Nucleotide excision repair is impaired by binding of transcription factors to DNA , 2015, Nature.

[14]  I. Tomlinson,et al.  The mini-driver model of polygenic cancer evolution , 2015, Nature Reviews Cancer.

[15]  M. Gerstein,et al.  LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations , 2015, Nucleic acids research.

[16]  Niko Välimäki,et al.  CTCF/cohesin-binding sites are frequently mutated in cancer , 2015, Nature Genetics.

[17]  J. Boyle,et al.  Cancer-associated TERT promoter mutations abrogate telomerase silencing , 2015, eLife.

[18]  M. Snyder,et al.  Recurrent Somatic Mutations in Regulatory Regions of Human Cancer Genomes , 2015, Nature Genetics.

[19]  G. Kempermann Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .

[20]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[21]  Michael P. Schroeder,et al.  In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. , 2015, Cancer cell.

[22]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[23]  Paz Polak,et al.  Cell-of-origin chromatin organization shapes the mutational landscape of cancer , 2015, Nature.

[24]  E. Larsson,et al.  Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types , 2014, Nature Genetics.

[25]  Mingming Jia,et al.  COSMIC: exploring the world's knowledge of somatic mutations in human cancer , 2014, Nucleic Acids Res..

[26]  Kevin Y. Yip,et al.  FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer , 2014, Genome Biology.

[27]  C. Sander,et al.  Genome-wide analysis of non-coding regulatory mutations in cancer , 2014, Nature Genetics.

[28]  V. Corces,et al.  CTCF: an architectural protein bridging genome topology and function , 2014, Nature Reviews Genetics.

[29]  K. Hemminki,et al.  TERT promoter mutations in cancer development. , 2014, Current opinion in genetics & development.

[30]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[31]  J. Stamatoyannopoulos,et al.  Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair , 2013, Nature Biotechnology.

[32]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[33]  Gabor T. Marth,et al.  Integrative Annotation of Variants from 1092 Humans: Application to Cancer Genomics , 2013, Science.

[34]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[35]  Miguel Melo,et al.  Frequency of TERT promoter mutations in human cancers , 2013, Nature Communications.

[36]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[37]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[38]  Gary L. Gallia,et al.  TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal , 2013, Proceedings of the National Academy of Sciences.

[39]  D. Schadendorf,et al.  TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.

[40]  Ming Hu,et al.  HiCNorm: removing biases in Hi-C data via Poisson regression , 2012, Bioinform..

[41]  Wouter de Laat,et al.  3C-based technologies to study the shape of the genome. , 2012, Methods.

[42]  L. Mirny,et al.  Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization , 2012, Nature Methods.

[43]  Kevin Y. Yip,et al.  Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors , 2012, Genome Biology.

[44]  A. Cournac,et al.  Normalization of a chromosomal contact map , 2012, BMC Genomics.

[45]  B. Schuster-Böckler,et al.  Chromatin organization is a major influence on regional mutation rates in human cancer cells , 2012, Nature.

[46]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[47]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[48]  M. Rubin,et al.  Oncogene-mediated alterations in chromatin conformation , 2012, Proceedings of the National Academy of Sciences.

[49]  A. Tanay,et al.  Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture , 2011, Nature Genetics.

[50]  Tak-Wah Lam,et al.  Next generation sequencing has lower sequence coverage and poorer SNP-detection capability in the regulatory regions , 2011, Scientific reports.

[51]  M. Blasco,et al.  Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins , 2011, Nature Reviews Cancer.

[52]  M. Freedman,et al.  Chromosome 8q24-Associated Cancers and MYC. , 2010, Genes & cancer.

[53]  A. Levine,et al.  A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans , 2007, Oncogene.

[54]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[55]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[56]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[57]  A. Levine,et al.  A Single Nucleotide Polymorphism in the MDM2 Promoter Attenuates the p53 Tumor Suppressor Pathway and Accelerates Tumor Formation in Humans , 2004, Cell.

[58]  D. Schadendorf,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2022 .