Effects of variations in precursor concentration on the growth of rutile TiO2 nanorods on Si substrate with fabricated fast-response metal–semiconductor–metal UV detector

Abstract This study aimed to investigate the effects of variations in precursor concentration (TiCl3 solution) on the structural, morphological, and optical properties of rutile titanium dioxide (TiO2) nanorods and fabricated metal–semiconductor–metal UV detector depending on the optimal sample. The nanorods were prepared from an aqueous solution of titanium (III) chloride (TiCl3) on p-type, (1 1 1)-oriented Si substrates at different concentrations of TiCl3 solutions (2, 3, 4, and 5 mM). The experimental results showed that the TiO2 nanorods grown at 4 mM concentration exhibited optimal structural properties. A fast-response metal–semiconductor–metal UV detector was fabricated by depositing Pt contacts on the front of the optimal sample via RF reactive magnetron sputtering. Upon exposure to 365 nm light (2.3 mW/cm2) at 5 V bias voltage, the device showed 44.4 sensitivity. In addition, the internal gain was 1.45, and the photoresponse peak was 70 mA/W. The response and the recovery times were calculated to be 7.8 ms upon illumination to a pulse UV light (365 nm) at 5 V bias voltage.

[1]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[2]  Xin Li,et al.  Two novel hierarchical homogeneous nanoarchitectures of TiO2 nanorods branched and P25-coated TiO2 nanotube arrays and their photocurrent performances , 2011, Nanoscale research letters.

[3]  Yuh-fan Su,et al.  An innovative method to quickly and simply prepare TiO2 nanorod arrays and improve their performance in photo water splitting , 2014 .

[4]  D. Dhawale,et al.  Synthesis and characterization of photosensitive TiO2 nanorods by controlled precipitation route , 2011 .

[5]  Xue Wang,et al.  UV sensor based on TiO2 nanorod arrays on FTO thin film , 2011 .

[6]  D. Tang,et al.  Lattice deformation and phase transformation from nano-scale anatase to nano-scale rutile TiO2 prepared by a sol-gel technique , 2004 .

[7]  Y. Choa,et al.  Development of Pt/TiO2 nanohybrids-modified SWCNT electrode for sensitive hydrogen peroxide detection , 2012 .

[8]  Faramarz Hossein-Babaei,et al.  Large area Ag–TiO2 UV radiation sensor fabricated on a thermally oxidized titanium chip , 2012 .

[9]  Zhu-de Xu,et al.  Facile and large-scale synthesis of hollow TiO2 nanostructures from TiCl3 solution , 2009 .

[10]  Y. Tseng,et al.  Direct probe of heterojunction effects upon photoconductive properties of TiO2 nanotubes fabricated by atomic layer deposition , 2010, Nanotechnology.

[11]  G. B. Harris X. Quantitative measurement of preferred orientation in rolled uranium bars , 1952 .

[12]  Fang Yang,et al.  Highly sensitive fast-response UV photodetectors based on epitaxial TiO2 films , 2011 .

[13]  M. A. Mahdi,et al.  High sensitivity and fast response and recovery times in a ZnO nanorod array/p-Si self-powered ultraviolet detector , 2012 .

[14]  Jianguo Zhao,et al.  Influence of growth temperature of TiO2 buffer on structure and PL properties of ZnO films , 2010 .

[15]  Nageh K. Allam,et al.  Low power UV photodetection characteristics of cross-linked ZnO nanorods/nanotetrapods grown on silicon chip , 2013 .

[16]  L. Miao,et al.  Heating-sol-gel template process for the growth of TiO2 nanorods with rutile and anatase structure , 2004 .

[17]  Lidong Li,et al.  Hydrothermal synthesis, characterization and properties of TiO2 nanorods on boron-doped diamond film , 2010 .

[18]  P. Borowicz,et al.  Deep-ultraviolet Raman investigation of silicon oxide: thin film on silicon substrate versus bulk material , 2012 .

[19]  Xuejun Zheng,et al.  Influence of crystallographic structure on the humidity sensing properties of KCl-doped TiO2 nanofibers , 2009 .

[20]  C. Chou,et al.  Preparation of TiO2/dye composite particles and their applications in dye-sensitized solar cell , 2008 .

[21]  Haibo Pan,et al.  Phosphorus doped TiO2 as oxygen sensor with low operating temperature and sensing mechanism , 2013 .

[22]  D. Shen,et al.  High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method , 2012 .

[23]  G. Han,et al.  Solvothermal growth of three-dimensional TiO2 nanostructures and their optical and photocatalytic properties , 2013 .

[24]  Sa. K. Narayandass,et al.  Structural characterization of DC magnetron-sputtered TiO2 thin films using XRD and Raman scattering studies , 2003 .

[25]  M. Camacho-López,et al.  Structural characterization of TiO2 thin films obtained by pulsed laser deposition , 1999 .

[26]  A. Aziz,et al.  UV photodetector behavior of 2D ZnO plates prepared by electrochemical deposition , 2012 .

[27]  Seung M. Oh,et al.  Preparation of pure rutile and anatase TiO2 nanopowders using RF thermal plasma , 2004 .

[28]  A. Lanzutti,et al.  Anodic titanium oxide as immobilized photocatalyst in UV or visible light devices. , 2011, Journal of hazardous materials.

[29]  Liangmo Mei,et al.  A self-powered UV photodetector based on TiO2 nanorod arrays , 2013, Nanoscale Research Letters.

[30]  H. Mahmodi,et al.  ZnO nanorod ultraviolet photodetector on porous silicon substrate , 2013 .

[31]  Z. Hassan,et al.  Structural and photoluminescence studies of rutile TiO2 nanorods prepared by chemical bath deposition method on Si substrates at different pH values , 2014 .

[32]  Mao-Sung Wu,et al.  Electrochemical formation of transparent nanostructured TiO2 film as an effective bifunctional layer for dye-sensitized solar cells. , 2011, Chemical Communications.

[33]  G. Shen,et al.  TiO2 nanorod films grown on Si wafers by a nanodot-assisted hydrothermal growth , 2011 .

[34]  Z. Hassan,et al.  Growth of Rutile TiO2 Nanorods by Chemical Bath Deposition Method on Silicon Substrate at Different Annealing Temperature , 2014 .

[35]  J. Yao,et al.  The fabrication of TiO2 nanorods from TiO2 nanoparticles by organic protection assisted template method , 2009, Nanotechnology.

[36]  M. Hashim,et al.  Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates , 2013 .

[37]  Zhifeng Liu,et al.  Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells , 2011 .

[38]  E. Gondek,et al.  Nano-sized blue spectral shift in sol–gel derived mesoporous titania films , 2012, Journal of Sol-Gel Science and Technology.

[39]  Congju Li,et al.  High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods , 2012 .

[40]  Dong Nyung Lee A model for development of orientation of vapour deposits , 1989 .

[41]  G. Shen,et al.  Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates , 2011 .

[42]  R. Chakradhar,et al.  Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[43]  Baozhu Tian,et al.  Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile. , 2011, Journal of hazardous materials.

[44]  Y. Jung,et al.  Size effects in the Raman spectra of TiO2 nanoparticles , 2005 .

[45]  M. Zhang,et al.  High response solar-blind ultraviolet photodetector based on Zr0.5Ti0.5O2 film , 2013 .

[46]  W. Dong,et al.  Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes , 2009 .

[47]  Q. Gao,et al.  Low temperature synthesis and characterization of rutile TiO2-coated mica–titania pigments , 2012 .

[48]  Hailin Xue,et al.  TiO2 based metal-semiconductor-metal ultraviolet photodetectors , 2007 .

[49]  Z. Hassan,et al.  A high-sensitivity, fast-response, rapid-recovery p–n heterojunction photodiode based on rutile TiO2 nanorod array on p-Si(1 1 1) , 2014 .

[50]  C. Flox,et al.  Optimization of surface charge transfer processes on rutile TiO2 nanorods photoanodes for water splitting , 2013 .

[51]  B. Rezek,et al.  Photoluminescence of nanocrystalline titanium dioxide films loaded with silver nanoparticles , 2011 .

[52]  P. Sipos,et al.  Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3 , 2008 .

[53]  Q. Gao,et al.  Fabrication of hierarchically structured rutile TiO2 nanorods on mica particles and their superhydrophilic coating without UV irridiation , 2014 .

[54]  S. K. Pradhan,et al.  Growth of TiO2 nanorods by metalorganic chemical vapor deposition , 2003 .

[55]  Z. Hassan,et al.  Influence of deposition temperature on the growth of rutile TiO2 nanostructures by CBD method on seed layer prepared by RF magnetron sputtering , 2013 .

[56]  K. Prabakar,et al.  Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films , 2012 .

[57]  M. Jayachandran,et al.  Spray deposition and property analysis of anatase phase titania (TiO2) nanostructures , 2010 .

[58]  Chenbo Wang,et al.  Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: A wet-chemical approach , 2012 .

[59]  F. Ge,et al.  Rapid synthesis of TiO2 hollow nanostructures with crystallized walls by using CuO as template and microwave heating , 2011 .

[60]  N. R. Mathews,et al.  TiO2 thin films - Influence of annealing temperature on structural, optical and photocatalytic properties , 2009 .

[61]  Umakant M. Patil,et al.  Photosensitive nanostructured TiO2 grown at room temperature by novel “bottom-up” approached CBD method , 2011 .

[62]  H. Bajaj,et al.  Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes , 2011 .

[63]  R. Gupta,et al.  Synthesis, phase to phase deposition and characterization of rutile nanocrystalline titanium dioxide (TiO2) thin films , 2013 .

[64]  Chien-min Liu,et al.  Ultraviolet Photoresponse of TiO2 Nanotube Arrays Fabricated by Atomic Layer Deposition , 2011 .

[65]  E. Ozbay,et al.  Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate , 2013 .

[66]  M. Hon,et al.  An ultraviolet photo-detector based on TiO2/water solid-liquid heterojunction , 2011 .

[67]  T. P. Gujar,et al.  Growth of TiO2 nanorods by chemical bath deposition method , 2008 .

[68]  M. Hashim,et al.  Flake-like ZnO nanostructures density for improved absorption using electrochemical deposition in UV detection , 2013 .

[69]  Fu Yao,et al.  Preparation of transparent TiO2 nanocrystalline film for UV sensor , 2006 .

[70]  D. Yuvaraj,et al.  Growth of rutile TiO2 nanorods on TiO2 seed layer deposited by electron beam evaporation , 2012 .

[71]  Yicheng Lu,et al.  ZnO Schottky barriers and Ohmic contacts , 2011 .

[72]  Young-Woo Lee,et al.  One-dimensional TiO2 nanostructures with improved UV-blocking properties , 2013 .

[73]  Xingao Gong,et al.  An Optimized Ultraviolet‐A Light Photodetector with Wide‐Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt , 2012, Advanced materials.