Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks.
暂无分享,去创建一个
This work performs a systematic computational study toward a molecular understanding of the separation characteristics of metal-organic frameworks (MOFs), for which the purification of synthetic gas by two representative MOFs, MOF-5 and Cu-BTC, is adopted as an example. The simulations show that both geometry and pore size affect largely the separation efficiency, complex selectivity behaviors with different steps can occur in MOFs, and the electrostatic interactions that exist can enhance greatly the separation efficiency of gas mixtures composed of components with different chemistries. Furthermore, the macroscopic separation behaviors of the MOF materials are elucidated at a molecular level to give insight into the underlying mechanisms. The findings as well as the molecular-level elucidations provide useful microscopic information toward a complete understanding of the separation characteristics of MOFs that may lead to general design strategies for synthesizing new MOFs with tailored properties, as well as guiding their practical applications.