A STRONGLY HEATED NEUTRON STAR IN THE TRANSIENT Z SOURCE MAXI J0556–332

We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556–332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color–color and hardness–intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556–332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556–332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M☉. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law ( = 184–308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures ( = 190–336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556–332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

[1]  E. Cackett,et al.  PROBING THE CRUST OF THE NEUTRON STAR IN EXO 0748–676 , 2014, 1403.2385.

[2]  L. Keek,et al.  Strong neutrino cooling by cycles of electron capture and β− decay in neutron star crusts , 2013, Nature.

[3]  A. Cumming,et al.  A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS , 2013, 1311.5145.

[4]  F. Bernardini,et al.  Daily multiwavelength Swift monitoring of the neutron star low-mass X-ray binary Cen X-4: evidence for accretion and reprocessing during quiescence , 2013, 1307.2492.

[5]  E. Cackett,et al.  CONTINUED NEUTRON STAR CRUST COOLING OF THE 11 Hz X-RAY PULSAR IN TERZAN 5: A CHALLENGE TO HEATING AND COOLING MODELS? , 2013, 1306.2345.

[6]  E. Cackett,et al.  UvA-DARE ( Digital Academic Repository ) A Change in the Quiescent X-Ray Spectrum of the Neutron Star Low-mass X-Ray Binary MXB 1659-29 , 2013 .

[7]  R. Wijnands,et al.  A low-level accretion flare during the quiescent state of the neutron-star X-ray transient SAX J1750.8-2900 , 2013, 1305.3091.

[8]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[9]  T. Belloni,et al.  Feeding Compact Objects: Accretion on All Scales , 2013 .

[10]  N. Kawai,et al.  Spectral Evolution of a New X-Ray Transient MAXI J0556-332 Observed by MAXI, Swift, and RXTE , 2013, 1301.2098.

[11]  J. Miller,et al.  An X-ray-UV correlation in Cen X-4 during quiescence , 2012, 1210.4510.

[12]  J. Tomsick,et al.  XMM-NEWTON FINDS THAT SAX J1750.8−2900 MAY HARBOR THE HOTTEST, MOST LUMINOUS KNOWN NEUTRON STAR , 2012, 1202.1531.

[13]  R. Wijnands,et al.  The enigmatic black hole candidate and X-ray transient IGR J17091-3624 in its quiescent state as seen with XMM-Newton , 2012, 1202.0489.

[14]  L. Keek,et al.  MILLIHERTZ QUASI-PERIODIC OSCILLATIONS AND THERMONUCLEAR BURSTS FROM TERZAN 5: A SHOWCASE OF BURNING REGIMES , 2011, 1111.3978.

[15]  T. Belloni,et al.  THE FAINT “HEARTBEATS” OF IGR J17091–3624: AN EXCEPTIONAL BLACK HOLE CANDIDATE , 2011, 1112.2393.

[16]  Cambridge,et al.  A STRONG EMISSION LINE NEAR 24.8 Å IN THE X-RAY BINARY SYSTEM MAXI J0556−332: GRAVITATIONAL REDSHIFT OR UNUSUAL DONOR? , 2011, 1110.6918.

[17]  R. Wijnands,et al.  Evidence for crust cooling in the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5 , 2011, 1107.5317.

[18]  Naoki Isobe,et al.  Gas Slit Camera (GSC) onboard MAXI on ISS , 2011, 1103.4224.

[19]  E. Cackett,et al.  Quiescent X-ray variability from the neutron star transient Aql X-1 , 2011, 1102.5016.

[20]  A. Parmar,et al.  XMM-Newton observations of the low-mass X-ray binary EXO 0748-676 in quiescence , 2011, 1102.2640.

[21]  E. Cackett,et al.  THE VARIABLE QUIESCENT X-RAY EMISSION OF THE TRANSIENT NEUTRON STAR XTE J1701−462 , 2010, 1101.0081.

[22]  E. Cackett,et al.  CONTINUED COOLING OF THE CRUST IN THE NEUTRON STAR LOW-MASS X-RAY BINARY KS 1731−260 , 2010, 1008.4727.

[23]  Kinwah Wu,et al.  X-ray study of HLX1: intermediate-mass black hole or foreground neutron star? , 2010, 1008.3382.

[24]  E. Cackett,et al.  QUIESCENT X-RAY EMISSION FROM Cen X-4: A VARIABLE THERMAL COMPONENT , 2010, 1007.2823.

[25]  K. Wood,et al.  Further X‐ray observations of EXO 0748−676 in quiescence: evidence for a cooling neutron star crust , 2010, 1007.0247.

[26]  R. Wijnands,et al.  XTE J1701−462 AND ITS IMPLICATIONS FOR THE NATURE OF SUBCLASSES IN LOW-MAGNETIC-FIELD NEUTRON STAR LOW-MASS X-RAY BINARIES , 2010, 1005.3210.

[27]  E. Feigelson,et al.  INNOVATIONS IN THE ANALYSIS OF CHANDRA-ACIS OBSERVATIONS , 2010, 1003.2397.

[28]  E. Cackett,et al.  RAPID COOLING OF THE NEUTRON STAR IN THE QUIESCENT SUPER-EDDINGTON TRANSIENT XTE J1701−462 , 2009, 1003.3460.

[29]  R. Wijnands,et al.  TYPE I X-RAY BURSTS FROM THE NEUTRON-STAR TRANSIENT XTE J1701−462 , 2009, 0904.2187.

[30]  Michael R. Garcia,et al.  REFINED ORBITAL SOLUTION AND QUIESCENT VARIABILITY IN THE BLACK HOLE TRANSIENT GS 1354–64 (= BW Cir) , 2009 .

[31]  A. Cumming,et al.  submitted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 MAPPING CRUSTAL HEATING WITH THE COOLING LIGHTCURVES OF QUASI-PERSISTENT TRANSIENTS , 2022 .

[32]  J. Homan,et al.  SPECTRAL STATES OF XTE J1701 − 462: LINK BETWEEN Z AND ATOLL SOURCES , 2008, 0901.0031.

[33]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[34]  K. Wood,et al.  Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748−676 back to quiescence , 2008, 0811.4582.

[35]  L. Stella,et al.  Swift Observations of SAX J1808.4–3658: Monitoring the Return to Quiescence , 2008, 0807.4444.

[36]  R. Wijnands,et al.  The behavior of subluminous X-ray transients near the Galactic center as observed using the X-ray telescope aboard Swift , 2008, 0807.3458.

[37]  E. Cackett,et al.  Cooling of the Crust in the Neutron Star Low-Mass X-Ray Binary MXB 1659–29 , 2008, 0806.1166.

[38]  K. L. Page,et al.  Line Searches in Swift X-Ray Spectra , 2008, 0802.0441.

[39]  Warsaw,et al.  Neutron star cooling after deep crustal heating in the X-ray transient KS 1731–260 , 2007, 0708.0086.

[40]  E. Cackett,et al.  Cooling of the quasi-persistent neutron star X-ray transients KS 1731−260 and MXB 1659−29 , 2006, astro-ph/0605490.

[41]  C. B. Markwardt,et al.  Calibration of the Rossi X-Ray Timing Explorer Proportional Counter Array , 2005, astro-ph/0511531.

[42]  G. Rybicki,et al.  A Hydrogen Atmosphere Spectral Model Applied to the Neutron Star X7 in the Globular Cluster 47 Tucanae , 2005, astro-ph/0506563.

[43]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[44]  R. Wijnands,et al.  Monitoring Chandra Observations of the Quasi-persistent Neutron Star X-Ray Transient MXB 1659–29 in Quiescence: The Cooling Curve of the Heated Neutron Star Crust , 2003, astro-ph/0310612.

[45]  R. Wijnands,et al.  The Hard Quiescent Spectrum of the Neutron Star X-Ray Transient EXO 1745–248 in the Globular Cluster Terzan 5 , 2003, astro-ph/0310144.

[46]  L. Stella,et al.  The Variable Quiescence of Centaurus X-4 , 2003, astro-ph/0309775.

[47]  Mark W. Bautz,et al.  Advanced CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[48]  R. Wijnands,et al.  A Chandra Observation of the Neutron Star X-Ray Transient and Eclipsing Binary MXB 1659–29 in Quiescence , 2002, astro-ph/0207094.

[49]  Robert E. Rutledge,et al.  Variable Thermal Emission from Aquila X-1 in Quiescence , 2002, astro-ph/0204196.

[50]  P. G. Jonker,et al.  Low- and high-frequency variability as a function of spectral properties in the bright X-ray binary GX 5-1 , 2002, astro-ph/0202420.

[51]  R. Wijnands,et al.  XMM-Newton Observations of the Neutron Star X-Ray Transient KS 1731–260 in Quiescence , 2002, astro-ph/0202398.

[52]  V. Kashyap,et al.  Statistics, Handle with Care: Detecting Multiple Model Components with the Likelihood Ratio Test , 2002, astro-ph/0201547.

[53]  John E. Davis,et al.  Event Pileup in Charge-coupled Devices , 2001 .

[54]  C. Dullemond,et al.  X-ray spectra from protons illuminating a neutron star , 2001, astro-ph/0108438.

[55]  L. Bildsten,et al.  Crustal Emission and the Quiescent Spectrum of the Neutron Star in KS 1731–260 , 2001, astro-ph/0108125.

[56]  R. Wijnands,et al.  A Chandra Observation of the Long-Duration X-Ray Transient KS 1731–260 in Quiescence: Too Cold a Neutron Star? , 2001, astro-ph/0107380.

[57]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[58]  E. Fomalont,et al.  High-Resolution Parallax Measurements of Scorpius X-1 , 1999 .

[59]  L. Bildsten,et al.  Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars , 1998, astro-ph/9807179.

[60]  G. Ferland,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996, astro-ph/9601009.

[61]  Ramesh Narayan,et al.  A New Model for Black Hole Soft X-Ray Transients in Quiescence , 1995, astro-ph/9508014.

[62]  A. Treves,et al.  X-Ray Spectra from Neutron Stars Accreting at Low Rates , 1994, astro-ph/9407067.

[63]  C. Pethick,et al.  Neutron star crusts. , 1993, Physical review letters.

[64]  K. Wachter,et al.  Parameter estimation in X-ray astronomy using maximum likelihood , 1979 .

[65]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[66]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[67]  Elmar Pfeffermann,et al.  The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera , 2001 .

[68]  J. Dickey,et al.  H I in the Galaxy , 1990 .