Does CO2 permeate through aquaporin-1?

Aquaporins facilitate water permeation across biological membranes. Additionally, glycerol and other small neutral solutes are permeated by related aquaglyceroporins. The role of aquaporins in gas permeation has been a long-standing and controversially discussed issue. We present an extensive set of atomistic molecular dynamics simulations that address the question of CO(2) permeation through human aquaporin-1. Free energy profiles derived from the simulations display a barrier of approximately 23 kJ/mol in the aromatic/arginine constriction region of the water pore, whereas a barrier of approximately 4 kJ/mol was observed for a palmitoyloleoylphosphatidylethanolamine lipid bilayer membrane. The results indicate that significant aquaporin-1-mediated CO(2) permeation is to be expected only in membranes with a low intrinsic CO(2) permeability.

[1]  C. Lovisolo,et al.  The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions , 2003, Nature.

[2]  D. Fu,et al.  Crystal Structure of AqpZ Tetramer Reveals Two Distinct Arg-189 Conformations Associated with Water Permeation through the Narrowest Constriction of the Water-conducting Channel* , 2006, Journal of Biological Chemistry.

[3]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[4]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[5]  M. Romero,et al.  Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. , 1998, American journal of physiology. Cell physiology.

[6]  E. Tajkhorshid,et al.  Molecular basis of proton blockage in aquaporins. , 2004, Structure.

[7]  W. Boron,et al.  Effect of PCMBS on CO2permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. , 1998, American journal of physiology. Cell physiology.

[8]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[9]  M. Saier,et al.  Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in Xenopus oocytes. , 1994, The Journal of biological chemistry.

[10]  K. Schulten,et al.  Control of the Selectivity of the Aquaporin Water Channel Family by Global Orientational Tuning , 2002, Science.

[11]  T. Walz,et al.  Biologically active two-dimensional crystals of aquaporin CHIP. , 1994, The Journal of biological chemistry.

[12]  P. Agre,et al.  Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. , 1992, Biochemistry.

[13]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[14]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[15]  L. Miercke,et al.  Selectivity and conductance among the glycerol and water conducting aquaporin family of channels , 2003, FEBS letters.

[16]  Andreas Engel,et al.  Structural determinants of water permeation through aquaporin-1 , 2000, Nature.

[17]  D. Fu,et al.  Structure of a glycerol-conducting channel and the basis for its selectivity. , 2000, Science.

[18]  Peter Agre,et al.  From structure to disease: the evolving tale of aquaporin biology , 2004, Nature Reviews Molecular Cell Biology.

[19]  R. Forster,et al.  The effect of 4,4'-diisothiocyanato-stilbene-2,2'-disulfonate on CO2 permeability of the red blood cell membrane. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Ronald M. Welch,et al.  Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests , 2001, Science.

[21]  J. Frøkiaer,et al.  Aquaporins in the kidney: from molecules to medicine. , 2002, Physiological reviews.

[22]  B. L. de Groot,et al.  Water Permeation Across Biological Membranes: Mechanism and Dynamics of Aquaporin-1 and GlpF , 2001, Science.

[23]  M. Zeidel,et al.  Reconstituted Aquaporin 1 Water Channels Transport CO2 across Membranes* , 1998, The Journal of Biological Chemistry.

[24]  Bong-Gyoon Han,et al.  Structural basis of water-specific transport through the AQP1 water channel , 2001, Nature.

[25]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[26]  Peter Agre,et al.  Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CHIP28 Protein , 1992, Science.

[27]  M. Yasui,et al.  Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. , 2002, The Journal of clinical investigation.

[28]  J Gutknecht,et al.  Diffusion of carbon dioxide through lipid bilayer membranes. Effects of carbonic anhydrase, bicarbonate, and unstirred layers , 1977, The Journal of general physiology.

[29]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[30]  A. Verkman,et al.  Does aquaporin‐1 pass gas? An opposing view , 2002, The Journal of physiology.

[31]  Tamir Gonen,et al.  Aquaporin-0 membrane junctions reveal the structure of a closed water pore , 2004, Nature.

[32]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[33]  Mario J. Borgnia,et al.  The Aquaporins, Blueprints for Cellular Plumbing Systems* , 1998, The Journal of Biological Chemistry.

[34]  A. Verkman,et al.  Carbon Dioxide Permeability of Aquaporin-1 Measured in Erythrocytes and Lung of Aquaporin-1 Null Mice and in Reconstituted Proteoliposomes* , 2000, The Journal of Biological Chemistry.

[35]  KumarShankar,et al.  The weighted histogram analysis method for free-energy calculations on biomolecules. I , 1992 .

[36]  W. Boron,et al.  Transport of volatile solutes through AQP1 , 2002, The Journal of physiology.

[37]  P. Deen,et al.  Epithelial aquaporins. , 1998, Current opinion in cell biology.

[38]  K. Schulten,et al.  The mechanism of proton exclusion in aquaporin channels , 2004, Proteins.

[39]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[40]  H. Ehmke,et al.  Aquaporin‐1 and HCO3−‐Cl− transporter‐mediated transport of CO2 across the human erythrocyte membrane , 2003, The Journal of physiology.

[41]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[42]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[43]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[44]  W. Boron,et al.  Unusual permeability properties of gastric gland cells , 1994, Nature.

[45]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[46]  A. Verkman,et al.  Evidence against aquaporin‐1‐dependent CO2 permeability in lung and kidney , 2002, The Journal of physiology.

[47]  M. Jensen,et al.  Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF. , 2006, Biophysical journal.

[48]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[49]  Robert M Stroud,et al.  Architecture and Selectivity in Aquaporins: 2.5 Å X-Ray Structure of Aquaporin Z , 2003, PLoS biology.

[50]  Robert M Stroud,et al.  The channel architecture of aquaporin 0 at a 2.2-A resolution. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  B. L. de Groot,et al.  The mechanism of proton exclusion in the aquaporin-1 water channel. , 2003, Journal of molecular biology.

[52]  Benoît Roux,et al.  Structural determinants of proton blockage in aquaporins. , 2004, Journal of molecular biology.