L Morphisms: Bounded Delay and Regularity of Ambiguity
暂无分享,去创建一个
[1] Juha Honkala. Regularity Properties of L Ambiguities of Morphisms , 1992 .
[2] Juha Honkala. Bases and Ambiguity of Number Systems , 1984, Theor. Comput. Sci..
[3] Juha Honkala. Unique representation in number systems and L codes , 1982, Discret. Appl. Math..
[4] Christiane Frougny,et al. Linear Numeration Systems of Order Two , 1988, Inf. Comput..
[5] J. Berstel,et al. Theory of codes , 1985 .
[6] Juha Honkala. A Decision Method for The Recognizability of Sets Defined by Number Systems , 1986, RAIRO Theor. Informatics Appl..
[7] Veronique Bruyere. Codes prefixes, codes a delai de dechiffrage borne , 1989 .
[8] Derick Wood,et al. L Codes and Number Systems , 1983, Theor. Comput. Sci..
[9] Juha Honkala,et al. It is decidable whether or not a permutation-free morphism is an l code , 1987 .
[10] Arto Salomaa,et al. Ambiguity and Decision Problems Concerning Number Systems , 1983, Inf. Control..
[11] Arto Salomaa. Jewels of formal language theory , 1981 .
[12] Juha Honkala,et al. On Lindenmayerian Series in Complete Semirings , 1993, Developments in Language Theory.
[13] Arto Salomaa,et al. Public-Key Cryptography , 1991, EATCS Monographs on Theoretical Computer Science.
[14] Derick Wood,et al. Bounded Delay L Codes , 1991, Theor. Comput. Sci..
[15] Antonio Restivo,et al. Star-Free Sets of Integers , 1986, Theor. Comput. Sci..
[16] Jean Berstel,et al. Fibonacci Words — A Survey , 1986 .
[17] Grzegorz Rozenberg,et al. The Book of L , 1986, Springer Berlin Heidelberg.
[18] Andrzej Ehrenfeucht,et al. Simplifications of Homomorphisms , 1978, Inf. Control..