A Formal Definition of Bottom-Up Embedded Push-Down Automata and Their Tabulation Technique

The task of designing parsing algorithms for tree adjoining grammars could be simplified by providing a separation between the description of the parsing strategy and the execution of the parser. This can be accomplished through the use of Bottom-up Embedded Push-Down Automata. Towards this aim, we provide a formal and consistent definition of this class of automata and, by removing the finite-state control, we obtain an alternative definition which is adequate to define a tabulation framework for this model of automata and to show the equivalence with respect to other kinds of automata accepting tree adjoining languages.

[1]  Gerald Gazdar,et al.  Applicability of Indexed Grammars to Natural Languages , 1988 .

[2]  Miguel A. Alonso,et al.  A tabular interpretation of bottom-up automata for TAG , 1998, TAG+.

[3]  Geoffrey K. Pullum,et al.  Generalized Phrase Structure Grammar , 1985 .

[4]  Mark Steedman,et al.  Combinators and Grammars , 1988 .

[5]  Stuart M. Shieber,et al.  Principles and Implementation of Deductive Parsing , 1994, J. Log. Program..

[6]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[7]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[8]  Bernard Lang,et al.  Towards a Uniform Formal Framework for Parsing , 1991 .

[9]  David J. Weir,et al.  On the Progression from Context-Free to Tree Adjoining Languages , 1987 .

[10]  Aravind K. Joshi,et al.  Tree-Adjoining Grammars , 1997, Handbook of Formal Languages.

[11]  Carl Jesse Pollard,et al.  Generalized phrase structure grammars, head grammars, and natural language , 1984 .

[12]  Masaru Tomita Current Issues in Parsing Technology , 1990 .

[13]  Miguel A. Alonso,et al.  A redefinition of Embedded Push-Down Automata , 2000, TAG+.

[14]  Mark-Jan Nederhof Linear Indexed Automata and Tabulation of TAG Parsing , 1998, TAPD.

[15]  Owen C. Ranbow,et al.  Formal and computational aspects of natural language syntax , 1994 .

[16]  Éric Villemonte de la Clergerie,et al.  Information Flow in Tabular Interpretations for Generalized Push-Down Automata , 1998, Theor. Comput. Sci..

[17]  Pierre Boullier,et al.  A generalization of mildly context-sensitive formalisms , 1998, TAG+.

[18]  Tilman Becker,et al.  Recursive Matrix Systems (RMS) and TAG , 1998, TAG+.

[19]  Miguel A. Alonso,et al.  Tabulation of Automata for Tree-Adjoining Languages , 2000, Grammars.

[20]  Gisela Pitsch,et al.  LR(k)-Parsing of Coupled-Context-Free Grammars , 1994, COLING.

[21]  Miguel A. Alonso,et al.  A Tabular Interpretation of a Class of 2-Stack Automata , 1998, COLING-ACL.

[22]  K. Vijay-Shanker,et al.  Deterministic Left to Right Parsing of Tree Adjoining Languages , 1990, ACL.

[23]  Aravind K. Joshi,et al.  A study of tree adjoining grammars , 1987 .