Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts

Abstract This paper is concerned with propagation phenomena for reaction–diffusion equations of the type: u t − ∇ ⋅ ( A ( x ) ∇ u ) = f ( x , u ) , x ∈ R N , where A is a given periodic diffusion matrix field, and f is a given nonlinearity which is periodic in the x-variables. This article is the sequel to [H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment model: I—influence of periodic heterogeneous environment on species persistence, Preprint]. The existence of pulsating fronts describing the biological invasion of the uniform 0 state by a heterogeneous state is proved here. A variational characterization of the minimal speed of such pulsating fronts is proved and the dependency of this speed on the heterogeneity of the medium is also analyzed.

[1]  Quenching of flames by fluid advection , 2000, nlin/0006024.

[2]  François Hamel,et al.  The speed of propagation for KPP type problems. I: Periodic framework , 2005 .

[3]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[4]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[5]  A. Kiselev,et al.  Enhancement of the traveling front speeds in reaction-diffusion equations with advection , 2000, math/0002175.

[6]  Bertram Zinner,et al.  EXISTENCE OF TRAVELING WAVES FOR REACTION DIFFUSION EQUATIONS OF FISHER TYPE IN PERIODIC MEDIA , 1995 .

[7]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[8]  N. Shigesada,et al.  Traveling periodic waves in heterogeneous environments , 1986 .

[9]  P. Lions,et al.  Multi-dimensional travelling-wave solutions of a flame propagation model , 1990 .

[10]  Jack Xin,et al.  Existence of planar flame fronts in convective-diffusive periodic media , 1992 .

[11]  A. Stevens,et al.  Variational Principles for Propagation Speeds in Inhomogeneous Media , 2001, SIAM J. Appl. Math..

[12]  Henri Berestycki,et al.  Nonlinear PDE's in condensed matter and reactive flows , 2002 .

[13]  Noriko Kinezaki,et al.  Modeling biological invasions into periodically fragmented environments. , 2003, Theoretical population biology.

[14]  Vitaly Volpert,et al.  Traveling Wave Solutions of Parabolic Systems , 1994 .

[15]  Y. Pomeau,et al.  Réaction diffusion en écoulement stationnaire rapide , 2000 .

[16]  Henri Berestycki,et al.  Travelling fronts in cylinders , 1992 .

[17]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[18]  Boundary value problems for functional differential equations , 1995 .

[19]  H. Berestycki,et al.  Gradient Estimates for Elliptic Regularizations of Semilinear Parabolic and Degenerate Elliptic Equations , 2005 .

[20]  S. Heinze The speed of travelling waves for convective reaction-diffusion equations , 2001 .

[21]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[22]  H. Berestycki The Influence of Advection on the Propagation of Fronts in Reaction-Diffusion Equations , 2002 .

[23]  F. Hamel Formules min-max pour les vitesses d'ondes progressives multidimensionnelles , 1999 .

[24]  H. Weinberger On spreading speeds and traveling waves for growth and migration models in a periodic habitat , 2003 .

[25]  Peter Kuchment,et al.  Waves in Periodic and Random Media , 2003 .

[26]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[27]  N. Nadirashvili,et al.  Elliptic Eigenvalue Problems with Large Drift and Applications to Nonlinear Propagation Phenomena , 2005 .

[28]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model : I - Influence of periodic heterogeneous environment on species persistence. , 2005 .