Dynamic Reducts and Statistical Inference

We apply rough set methods and boolean reasoning for knowledge discovery from decision tables. It is often impossible to extract general laws from experimental data by computing rst all reducts (Pawlak 1991) of a data table (decision table) and next decision rules from these reducts. We have developed an idea of dynamic reducts as a tool allowing to nd relevant reducts for the decision rule generation (Bazan 1994a), (Bazan 1994b), (Bazan 1994c), (Nguyen 1993). Tests on several data tables are showing that the application of dynamic reducts leads to the increasing of the classiication quality and/or decreasing of the size of decision rule sets. In this paper we present some statistical arguments showing that the introduced stability coeecients of dynamic reducts are proper measures of their quality.

[1]  Andrzej Skowron,et al.  A rough set approach to decision rules generation , 1993 .

[2]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[3]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[4]  Andrzej Skowron,et al.  Boolean Reasoning for Decision Rules Generation , 1993, ISMIS.

[5]  E. D. Rest,et al.  Statistical Theory and Methodology in Science and Engineering , 1963 .

[6]  James S. Harris,et al.  Probability theory and mathematical statistics , 1998 .

[7]  L. D. Raedt Interactive theory revision: an inductive logic programming approach , 1992 .

[8]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[9]  J. Simon,et al.  From Pixels to Features III: Frontiers in Handwriting Recognition , 1992 .

[10]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[11]  P. Gupta,et al.  Extended Abstracts , 2002, Neonatology.

[12]  Wojciech Ziarko,et al.  An Incremental Learning Algorithm for Constructing Decision Rules , 1993, RSKD.

[13]  P. Langley,et al.  Computational Models of Scientific Discovery and Theory Formation , 1990 .

[14]  E. Lloyd Statistical Theory and Methodology in Science and Engineering , 1961 .

[15]  Ryszard S. Michalski,et al.  Constructive Induction An Automated Improvement of Knowledge Representation Spaces for Machine Learning , 1993 .

[16]  Paul E. Utgoff,et al.  Automatic Feature Generation for Problem Solving Systems , 1992, ML.

[17]  Thomas G. Dietterich,et al.  Learning with Many Irrelevant Features , 1991, AAAI.

[18]  R. Słowiński Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .

[19]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[20]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .