End-to-end epidemic multicast loss recovery: Analysis of scalability and robustness

For ensuring reliability at the transport level end-to-end multicasting, an efficient loss recovery mechanism is indispensable. We consider scalability, topology independence and robustness as the significant features that such a mechanism should offer, and demonstrate that an epidemic loss recovery approach is superior in all these aspects. We also show that the epidemic approach transparently handles network link failures by using pair-wise propagation of information, and compare it with feedback controlled loss recovery on identical network settings. The contribution of this work is the simulative analysis of recovery overhead distribution on multicast group members in the case of various link failures on the network, the impact of group size, randomized system-wide noise and message rate on scalability, and examination of various scenarios modeling the overlay networks. We investigate the important features of epidemic multicast loss recovery extensively together and reach concrete results on realistic network

[1]  M. S. Ali,et al.  Reliable Multicast Transport Protocol: RMTP , 2010 .

[2]  Deborah Estrin,et al.  Error recovery in scalable reliable multicast , 1997 .

[3]  Alexander Grey,et al.  The Mathematical Theory of Infectious Diseases and Its Applications , 1977 .

[4]  Donald F. Towsley,et al.  Parity-based loss recovery for reliable multicast transmission , 1997, TNET.

[5]  Miguel Castro,et al.  Scribe: a large-scale and decentralized application-level multicast infrastructure , 2002, IEEE J. Sel. Areas Commun..

[6]  Luigi Rizzo,et al.  Effective erasure codes for reliable computer communication protocols , 1997, CCRV.

[7]  Vern Paxson,et al.  End-to-end Internet packet dynamics , 1997, SIGCOMM '97.

[8]  Kenneth L. Calvert,et al.  Modeling Internet topology , 1997, IEEE Commun. Mag..

[10]  Öznur Özkasap,et al.  Scalability and Robustness of Pull-Based Anti-entropy Distribution Model , 2003, ISCIS.

[11]  ZHANGLi-xia,et al.  A reliable multicast framework for light-weight sessions and application level framing , 1995 .

[12]  Matthew Thomas Lucas,et al.  Efficient data distribution in large-scale multicast networks , 1998 .

[13]  Walter Willinger,et al.  Network topology generators: degree-based vs. structural , 2002, SIGCOMM '02.

[14]  Vincent Roca,et al.  Large scale content distribution protocols , 2005, CCRV.

[15]  Robert Cole,et al.  Computer Communications , 1982, Springer New York.

[16]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[17]  Wen Xu,et al.  Raptor codes for reliable download delivery in wireless broadcast systems , 2006, CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 2006..

[18]  J. Crowcroft,et al.  The PGM Reliable Multicast Protocol , 2002 .

[19]  Robbert van Renesse,et al.  A Gossip-Style Failure Detection Service , 2009 .

[20]  Öznur Özkasap,et al.  Large-Scale Behavior of End-to-End Epidemic Message Loss Recovery , 2002, QofIS.

[21]  Öznur Özkasap,et al.  Traffic characterization of transport level reliable multicasting: Comparison of epidemic and feedback controlled loss recovery , 2006, Comput. Networks.

[22]  Oznur Ozkasap,et al.  Scalability, Throughput Stability and Efficient Buffering in Reliable Multicast Protocols , 2000 .

[23]  Scott Shenker,et al.  Epidemic algorithms for replicated database maintenance , 1988, OPSR.

[24]  Kenneth P. Birman,et al.  A randomized error recovery algorithm for reliable multicast , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[25]  Michael Mitzenmacher,et al.  A digital fountain approach to asynchronous reliable multicast , 2002, IEEE J. Sel. Areas Commun..

[26]  Miguel Castro,et al.  SplitStream: high-bandwidth multicast in cooperative environments , 2003, SOSP '03.

[27]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[28]  Kenneth P. Birman,et al.  Bimodal multicast , 1999, TOCS.

[29]  Richard A. Golding,et al.  GROUP MEMBERSHIP IN THE EPIDEMIC STYLE , 1992 .

[30]  Sneha Kumar Kasera,et al.  Improving reliable multicast using active parity encoding services , 2004, Comput. Networks.

[31]  Satish Kumar,et al.  Improving Simulation for Network Research , 1999 .

[32]  Kenneth P. Birman,et al.  Scalable message stability detection protocols , 1998 .

[33]  Roger M. Needham,et al.  Grapevine: an exercise in distributed computing , 1982, CACM.

[34]  Anne-Marie Kermarrec,et al.  Epidemic information dissemination in distributed systems , 2004, Computer.

[35]  Öznur Özkasap,et al.  Performance study of a probabilistic multicast transport protocol , 2004, Perform. Evaluation.

[36]  Upkar Varshney,et al.  Multicast over wireless networks , 2002, CACM.

[37]  Kurt J. Lidl,et al.  Drinking from the Firehose: Multicast USENET News , 1994, USENIX Winter.

[38]  Ozalp Babaoglu,et al.  ACM Transactions on Computer Systems , 2007 .

[39]  Robbert van Renesse,et al.  Astrolabe: A robust and scalable technology for distributed system monitoring, management, and data mining , 2003, TOCS.

[40]  Antony I. T. Rowstron,et al.  Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems , 2001, Middleware.

[41]  Shervin Shirmohammadi,et al.  A survey of application-layer multicast protocols , 2007, IEEE Communications Surveys & Tutorials.

[42]  Kirk L. Johnson,et al.  Overcast: reliable multicasting with on overlay network , 2000, OSDI.