Thiofractor thiocaminus gen. nov., sp. nov., a novel hydrogen-oxidizing, sulfur-reducing epsilonproteobacterium isolated from a deep-sea hydrothermal vent chimney in the Nikko Seamount field of the northern Mariana Arc
暂无分享,去创建一个
K. Takai | F. Inagaki | S. Nakagawa | M. Miyazaki | H. Makita | K. Nakamura
[1] M. Nei,et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.
[2] Peter Mullany,et al. Acquired Antibiotic Resistance Genes: An Overview , 2011, Front. Microbio..
[3] K. Takai,et al. Sulfur Metabolisms in Epsilon- and Gamma-Proteobacteria in Deep-Sea Hydrothermal Fields , 2011, Front. Microbio..
[4] Michael Hügler,et al. Pathways of Carbon and Energy Metabolism of the Epibiotic Community Associated with the Deep-Sea Hydrothermal Vent Shrimp Rimicaris exoculata , 2011, PloS one.
[5] S. Spring,et al. Complete genome sequence of Sulfurimonas autotrophica type strain (OK10T) , 2010, Standards in genomic sciences.
[6] Ken Takai,et al. Variability in Microbial Communities in Black Smoker Chimneys at the NW Caldera Vent Field, Brothers Volcano, Kermadec Arc , 2009 .
[7] S. Goffredi,et al. Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsuta. , 2008, Environmental microbiology.
[8] K. Takai,et al. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. , 2008, FEMS microbiology ecology.
[9] Thomas E Hanson,et al. Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. , 2008, International journal of systematic and evolutionary microbiology.
[10] M. Porter,et al. Diversity of Uncultured Epsilonproteobacteria from Terrestrial Sulfidic Caves and Springs , 2008, Applied and Environmental Microbiology.
[11] Susan M. Huse,et al. Microbial Population Structures in the Deep Marine Biosphere , 2007, Science.
[12] K. Horikoshi,et al. Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens , 2007, Proceedings of the National Academy of Sciences.
[13] Kazuya Watanabe,et al. Sulfurospirillum cavolei sp. nov., a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity. , 2007, International journal of systematic and evolutionary microbiology.
[14] K. Horikoshi,et al. Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. , 2007, Proceedings of the National Academy of Sciences of the United States of America.
[15] Yohey Suzuki,et al. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emend , 2006, International journal of systematic and evolutionary microbiology.
[16] B. Campbell,et al. The versatile ε-proteobacteria: key players in sulphidic habitats , 2006, Nature Reviews Microbiology.
[17] B. Campbell,et al. The versatile epsilon-proteobacteria: key players in sulphidic habitats. , 2006, Nature reviews. Microbiology.
[18] Yohey Suzuki,et al. Enzymatic and Genetic Characterization of Carbon and Energy Metabolisms by Deep-Sea Hydrothermal Chemolithoautotrophic Isolates of Epsilonproteobacteria , 2005, Applied and Environmental Microbiology.
[19] Yohey Suzuki,et al. Novel Chemoautotrophic Endosymbiosis between a Member of the Epsilonproteobacteria and the Hydrothermal-Vent Gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean , 2005, Applied and Environmental Microbiology.
[20] S. Sievert,et al. Evidence for Autotrophic CO2 Fixation via the Reductive Tricarboxylic Acid Cycle by Members of the ε Subdivision of Proteobacteria , 2005, Journal of bacteriology.
[21] Satoshi Nakagawa,et al. Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the epsilon-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. , 2005, International journal of systematic and evolutionary microbiology.
[22] Y. Sako,et al. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the epsilon-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. , 2005, International journal of systematic and evolutionary microbiology.
[23] Yohey Suzuki,et al. Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the 'Epsilonproteobacteria', isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. , 2005, International journal of systematic and evolutionary microbiology.
[24] H. G. Trüper,et al. Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells ofChromatium okenii , 2005, Antonie van Leeuwenhoek.
[25] K. Finster,et al. Isolation and characterization of Sulfurospirillum carboxydovorans sp. nov., a new microaerophilic carbon monoxide oxidizing epsilon Proteobacterium , 2005, Antonie van Leeuwenhoek.
[26] K. Nealson,et al. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. , 2004, International journal of systematic and evolutionary microbiology.
[27] A. Stams,et al. Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms. , 2004, FEMS microbiology ecology.
[28] P. Kroneck,et al. Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species , 1992, Archives of Microbiology.
[29] A. Neumann,et al. Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium , 2004, Archives of Microbiology.
[30] S. Spring,et al. Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class 'Epsilonproteobacteria', isolated from a deep-sea hydrothermal vent. , 2004, International journal of systematic and evolutionary microbiology.
[31] K. Nealson,et al. Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the epsilon-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. , 2004, International journal of systematic and evolutionary microbiology.
[32] K. Nealson,et al. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. , 2003, International journal of systematic and evolutionary microbiology.
[33] W. D. de Vos,et al. Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. , 2003, International journal of systematic and evolutionary microbiology.
[34] J. Baross,et al. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. , 2003, FEMS microbiology ecology.
[35] K. Nealson,et al. Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields , 2003 .
[36] P. Fields,et al. Genetic diversity and relationships of Campylobacter species and subspecies. , 2002, International journal of systematic and evolutionary microbiology.
[37] J. Querellou,et al. Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. , 2002, International journal of systematic and evolutionary microbiology.
[38] E. Stackebrandt,et al. Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. , 2002, International journal of systematic and evolutionary microbiology.
[39] B. Campbell,et al. Growth and Phylogenetic Properties of Novel Bacteria Belonging to the Epsilon Subdivision of the Proteobacteria Enriched fromAlvinella pompejana and Deep-Sea Hydrothermal Vents , 2001, Applied and Environmental Microbiology.
[40] D. Lovley,et al. Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. , 1999, International journal of systematic bacteriology.
[41] Christof Holliger,et al. Reductive dechlorination in the energy metabolism of anaerobic bacteria , 1998 .
[42] W. Liesack,et al. Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium. , 1997, International journal of systematic bacteriology.
[43] Thomas L. Madden,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.
[44] Y. Sako,et al. Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. , 1996, International journal of systematic bacteriology.
[45] S. Cary,et al. Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana , 1995, Applied and environmental microbiology.
[46] D. Lane. 16S/23S rRNA sequencing , 1991 .
[47] E. Stackebrandt,et al. Nucleic acid techniques in bacterial systematics , 1991 .
[48] H. Klenk,et al. Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides , 1990, Journal of bacteriology.
[49] K. Komagata,et al. 4 Lipid and Cell-Wall Analysis in Bacterial Systematics , 1988 .
[50] K. Komagata,et al. Determination of DNA base composition by reversed-phase high-performance liquid chromatography , 1984 .
[51] D. Minnikin,et al. AN INTEGRATED PROCEDURE FOR THE EXTRACTION OF BACTERIAL ISOPRENOID QUINONES AND POLAR LIPIDS , 1984 .
[52] K. Porter,et al. The use of DAPI for identifying and counting aquatic microflora1 , 1980 .
[53] C. Woese,et al. Methanogens: reevaluation of a unique biological group , 1979, Microbiological reviews.
[54] A. T. Hoor. A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. Nov. , 1975 .
[55] P. Doty,et al. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. , 1962, Journal of molecular biology.