Thiofractor thiocaminus gen. nov., sp. nov., a novel hydrogen-oxidizing, sulfur-reducing epsilonproteobacterium isolated from a deep-sea hydrothermal vent chimney in the Nikko Seamount field of the northern Mariana Arc

[1]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[2]  Peter Mullany,et al.  Acquired Antibiotic Resistance Genes: An Overview , 2011, Front. Microbio..

[3]  K. Takai,et al.  Sulfur Metabolisms in Epsilon- and Gamma-Proteobacteria in Deep-Sea Hydrothermal Fields , 2011, Front. Microbio..

[4]  Michael Hügler,et al.  Pathways of Carbon and Energy Metabolism of the Epibiotic Community Associated with the Deep-Sea Hydrothermal Vent Shrimp Rimicaris exoculata , 2011, PloS one.

[5]  S. Spring,et al.  Complete genome sequence of Sulfurimonas autotrophica type strain (OK10T) , 2010, Standards in genomic sciences.

[6]  Ken Takai,et al.  Variability in Microbial Communities in Black Smoker Chimneys at the NW Caldera Vent Field, Brothers Volcano, Kermadec Arc , 2009 .

[7]  S. Goffredi,et al.  Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsuta. , 2008, Environmental microbiology.

[8]  K. Takai,et al.  Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. , 2008, FEMS microbiology ecology.

[9]  Thomas E Hanson,et al.  Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. , 2008, International journal of systematic and evolutionary microbiology.

[10]  M. Porter,et al.  Diversity of Uncultured Epsilonproteobacteria from Terrestrial Sulfidic Caves and Springs , 2008, Applied and Environmental Microbiology.

[11]  Susan M. Huse,et al.  Microbial Population Structures in the Deep Marine Biosphere , 2007, Science.

[12]  K. Horikoshi,et al.  Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens , 2007, Proceedings of the National Academy of Sciences.

[13]  Kazuya Watanabe,et al.  Sulfurospirillum cavolei sp. nov., a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity. , 2007, International journal of systematic and evolutionary microbiology.

[14]  K. Horikoshi,et al.  Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Yohey Suzuki,et al.  Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emend , 2006, International journal of systematic and evolutionary microbiology.

[16]  B. Campbell,et al.  The versatile ε-proteobacteria: key players in sulphidic habitats , 2006, Nature Reviews Microbiology.

[17]  B. Campbell,et al.  The versatile epsilon-proteobacteria: key players in sulphidic habitats. , 2006, Nature reviews. Microbiology.

[18]  Yohey Suzuki,et al.  Enzymatic and Genetic Characterization of Carbon and Energy Metabolisms by Deep-Sea Hydrothermal Chemolithoautotrophic Isolates of Epsilonproteobacteria , 2005, Applied and Environmental Microbiology.

[19]  Yohey Suzuki,et al.  Novel Chemoautotrophic Endosymbiosis between a Member of the Epsilonproteobacteria and the Hydrothermal-Vent Gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean , 2005, Applied and Environmental Microbiology.

[20]  S. Sievert,et al.  Evidence for Autotrophic CO2 Fixation via the Reductive Tricarboxylic Acid Cycle by Members of the ε Subdivision of Proteobacteria , 2005, Journal of bacteriology.

[21]  Satoshi Nakagawa,et al.  Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the epsilon-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. , 2005, International journal of systematic and evolutionary microbiology.

[22]  Y. Sako,et al.  Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the epsilon-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. , 2005, International journal of systematic and evolutionary microbiology.

[23]  Yohey Suzuki,et al.  Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the 'Epsilonproteobacteria', isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. , 2005, International journal of systematic and evolutionary microbiology.

[24]  H. G. Trüper,et al.  Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells ofChromatium okenii , 2005, Antonie van Leeuwenhoek.

[25]  K. Finster,et al.  Isolation and characterization of Sulfurospirillum carboxydovorans sp. nov., a new microaerophilic carbon monoxide oxidizing epsilon Proteobacterium , 2005, Antonie van Leeuwenhoek.

[26]  K. Nealson,et al.  Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. , 2004, International journal of systematic and evolutionary microbiology.

[27]  A. Stams,et al.  Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms. , 2004, FEMS microbiology ecology.

[28]  P. Kroneck,et al.  Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species , 1992, Archives of Microbiology.

[29]  A. Neumann,et al.  Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium , 2004, Archives of Microbiology.

[30]  S. Spring,et al.  Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class 'Epsilonproteobacteria', isolated from a deep-sea hydrothermal vent. , 2004, International journal of systematic and evolutionary microbiology.

[31]  K. Nealson,et al.  Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the epsilon-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. , 2004, International journal of systematic and evolutionary microbiology.

[32]  K. Nealson,et al.  Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. , 2003, International journal of systematic and evolutionary microbiology.

[33]  W. D. de Vos,et al.  Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. , 2003, International journal of systematic and evolutionary microbiology.

[34]  J. Baross,et al.  Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. , 2003, FEMS microbiology ecology.

[35]  K. Nealson,et al.  Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields , 2003 .

[36]  P. Fields,et al.  Genetic diversity and relationships of Campylobacter species and subspecies. , 2002, International journal of systematic and evolutionary microbiology.

[37]  J. Querellou,et al.  Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. , 2002, International journal of systematic and evolutionary microbiology.

[38]  E. Stackebrandt,et al.  Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. , 2002, International journal of systematic and evolutionary microbiology.

[39]  B. Campbell,et al.  Growth and Phylogenetic Properties of Novel Bacteria Belonging to the Epsilon Subdivision of the Proteobacteria Enriched fromAlvinella pompejana and Deep-Sea Hydrothermal Vents , 2001, Applied and Environmental Microbiology.

[40]  D. Lovley,et al.  Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. , 1999, International journal of systematic bacteriology.

[41]  Christof Holliger,et al.  Reductive dechlorination in the energy metabolism of anaerobic bacteria , 1998 .

[42]  W. Liesack,et al.  Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium. , 1997, International journal of systematic bacteriology.

[43]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[44]  Y. Sako,et al.  Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. , 1996, International journal of systematic bacteriology.

[45]  S. Cary,et al.  Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana , 1995, Applied and environmental microbiology.

[46]  D. Lane 16S/23S rRNA sequencing , 1991 .

[47]  E. Stackebrandt,et al.  Nucleic acid techniques in bacterial systematics , 1991 .

[48]  H. Klenk,et al.  Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides , 1990, Journal of bacteriology.

[49]  K. Komagata,et al.  4 Lipid and Cell-Wall Analysis in Bacterial Systematics , 1988 .

[50]  K. Komagata,et al.  Determination of DNA base composition by reversed-phase high-performance liquid chromatography , 1984 .

[51]  D. Minnikin,et al.  AN INTEGRATED PROCEDURE FOR THE EXTRACTION OF BACTERIAL ISOPRENOID QUINONES AND POLAR LIPIDS , 1984 .

[52]  K. Porter,et al.  The use of DAPI for identifying and counting aquatic microflora1 , 1980 .

[53]  C. Woese,et al.  Methanogens: reevaluation of a unique biological group , 1979, Microbiological reviews.

[54]  A. T. Hoor A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. Nov. , 1975 .

[55]  P. Doty,et al.  Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. , 1962, Journal of molecular biology.