New Frontiers for Arch Models

In the 20 years following the publication of the ARCH model, there has been a vast quantity of research uncovering the properties of competing volatility models. Wide-ranging applications to financial data have discovered important stylized facts and illustrated both the strengths and weaknesses of the models. There are now many surveys of this literature. This paper looks forward to identify promising areas of new research. The paper lists five new frontiers. It briefly discusses three-high-frequency volatility models, large-scale multivariate ARCH models, and derivatives pricing models. Two further frontiers are examined in more detail-application of ARCH models to the broad class of non-negative processes, and use of Least Squares Monte Carlo to examine non-linear properties of any model that can be simulated. Using this methodology, the paper analyses more general types of ARCH models, stochastic volatility models, long-memory models and breaking volatility models. The volatility of volatility is defined, estimated and compared with option-implied volatilities. Copyright © 2002 John Wiley & Sons, Ltd.

[1]  S. Taylor Financial Returns Modelled by the Product of Two Stochastic Processes , 1961 .

[2]  G. Styan Hadamard products and multivariate statistical analysis , 1973 .

[3]  Myron S. Scholes,et al.  Estimating betas from nonsynchronous data , 1977 .

[4]  T. W. Epps Comovements in Stock Prices in the Very Short Run , 1979 .

[5]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[6]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[7]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[8]  H. Iemoto Modelling the persistence of conditional variances , 1986 .

[9]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[10]  Russell P. Robins,et al.  Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model , 1987 .

[11]  K. French,et al.  Expected stock returns and volatility , 1987 .

[12]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[13]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[14]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[15]  J. Wooldridge,et al.  A Capital Asset Pricing Model with Time-Varying Covariances , 1988, Journal of Political Economy.

[16]  Daniel B. Nelson The time series behavior of stock market volatility and returns , 1988 .

[17]  G. Schwert Why Does Stock Market Volatility Change Over Time? , 1988 .

[18]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[19]  Daniel B. Nelson Stationarity and Persistence in the GARCH(1,1) Model , 1990, Econometric Theory.

[20]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[21]  Thanasis Stengos,et al.  A Comparison of Risk-Premium Forecasts Implied by Parametric Versus Nonparametric Conditional Mean Estimators , 1992 .

[22]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[23]  Anil K. Bera,et al.  A Class of Nonlinear ARCH Models , 1992 .

[24]  Daniel B. Nelson,et al.  Inequality Constraints in the Univariate GARCH Model , 1992 .

[25]  R. Engle,et al.  Implied ARCH models from options prices , 1992 .

[26]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[27]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[28]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[29]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[30]  J. Zakoian,et al.  Threshold Arch Models and Asymmetries in Volatility , 1993 .

[31]  Anil K. Bera,et al.  ARCH Models: Properties, Estimation and Testing , 1993 .

[32]  Bruce E. Hansen,et al.  Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator , 1994, Econometric Theory.

[33]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[34]  R. Engle,et al.  Forecasting Volatility and Option Prices of the S&P 500 Index , 1994 .

[35]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[36]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .

[37]  Kenneth A. Froot,et al.  Tests of conditional mean-variance efficiency of the U.S. stock market , 1995 .

[38]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[39]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[40]  Robert F. Engle,et al.  The Econometrics of Ultra-High Frequency Data , 1996 .

[41]  R. Lumsdaine,et al.  Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models , 1996 .

[42]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[43]  J. Durbin,et al.  Monte Carlo maximum likelihood estimation for non-Gaussian state space models , 1997 .

[44]  F. Diebold,et al.  How Relevant is Volatility Forecasting for Financial Risk Management? , 1997 .

[45]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[46]  Jin-Chuan Duan,et al.  Augmented GARCH (p,q) process and its diffusion limit , 1997 .

[47]  M. Pitt,et al.  Likelihood analysis of non-Gaussian measurement time series , 1997 .

[48]  R. Engle,et al.  Testing the Volatility Term Structure Using Option Hedging Criteria , 1997 .

[49]  Jaeho Cho A Theory of the Term Structure of Interest Rates Under Non-expected Intertemporal Preferences , 1998 .

[50]  F. Breidt,et al.  The detection and estimation of long memory in stochastic volatility , 1998 .

[51]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[52]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[53]  Giorgio De Santis,et al.  How big is the premium for currency risk? 1 We thank Geert Bekaert, Tim Bollerslev, Peter Bossaerts, , 1998 .

[54]  Siem Jan Koopman,et al.  Estimation of stochastic volatility models via Monte Carlo maximum likelihood , 1998 .

[55]  A. Gallant,et al.  Reprojecting Partially Observed Systems with Application to Interest Rate Diffusions , 1998 .

[56]  R. Engle,et al.  Empirical Pricing Kernels , 1999 .

[57]  Timo Teräsvirta,et al.  Properties of Moments of a Family of GARCH Processes , 1999 .

[58]  F. Diebold,et al.  The Distribution of Exchange Rate Volatility , 1999 .

[59]  Peter H. Ritchken,et al.  Pricing Options under Generalized GARCH and Stochastic Volatility Processes , 1999 .

[60]  Timo Teräsvirta,et al.  FOURTH MOMENT STRUCTURE OF THE GARCH(p,q) PROCESS , 1999, Econometric Theory.

[61]  C. Hurvich,et al.  Estimation of Long Memory in Volatility , 2000 .

[62]  T. Bollerslev,et al.  Intraday periodicity, long memory volatility, and macroeconomic announcement effects in the US Treasury bond market , 2000 .

[63]  R. Engle Dynamic Conditional Correlation : A Simple Class of Multivariate GARCH Models , 2000 .

[64]  Andrew J. Patton,et al.  What good is a volatility model? , 2001 .

[65]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[66]  Michael McAleer,et al.  A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors , 2001 .

[67]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[68]  E. Ruiz,et al.  Is stochastic volatility more flexible than garch , 2001 .

[69]  Jinyong Hahn,et al.  Série Scientifique Scientific Series Testing and Comparing Value-at-risk Measures , 2022 .

[70]  R. Engle GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics , 2001 .

[71]  R. Engle,et al.  GARCH 101: An Introduction to the Use of Arch/Garch Models in Applied Econometrics , 2001 .

[72]  Ser-Huang Poon,et al.  Forecasting Financial Market Volatility: A Review , 2001 .

[73]  Michael McAleer,et al.  NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS , 2002, Econometric Theory.

[74]  Philippe Soulier,et al.  Estimating Long Memory in Volatility , 2002 .

[75]  R. Engle,et al.  Modeling Variance of Variance: The Square-Root, the Affine, and the CEV GARCH Models ∗ , 2002 .

[76]  M. McAleer,et al.  Stationarity and the existence of moments of a family of GARCH processes , 2002 .

[77]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[78]  C. Granger,et al.  Forecasting Volatility in Financial Markets: A Review , 2003 .

[79]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.