Element Partitioning and Li‐O Isotope Fractionation Between Silicate Minerals and Crustal‐Derived Carbonatites and Their Implications

In order to investigate element partitioning and Li‐O isotope fractionation between silicate minerals and carbonatite melts at variable levels from mantle to crust, we document elemental and Li‐O isotopic data for major minerals from crust‐derived carbonatites at Eppawala, Sri Lanka. Partition coefficients (D) of elements between olivine or clinopyroxene and carbonatite melts are consequently estimated. The estimated D values indicate that Li, Zn, Co, Cr, Mn, and Ni behave compatibly in olivine, while P and Sc are slightly compatible, and V and Al are mildly incompatible. Partition coefficients of elements between clinopyroxene and carbonatite melts are defined here, including highly compatible Li, Sc, Ti, V, Al, and Na, moderately compatible Zn, Co, Cr, and Ga, and incompatible Mn, Ni, P, and Cu. They are systematically higher than literature values obtained from mantle conditions, but their relative compatibilities at different systems are consistent. This indicates that element partitioning between silicates and carbonatite melts is highly temperature‐ and pressure‐dependent and can be used to evaluate geochemical proxies of carbonatite metasomatism, and evolution and mineralization of carbonatite melts. Profile analyses on olivine grains reveal that Fe‐loving elements in olivine could well preserve features of crystal growth and modal metasomatic interaction, while Li and O isotope fractionations are strongly controlled by element diffusion and Li isotopes are robust indicators of cryptic metasomatic interaction.

[1]  Wenbin Zhu,et al.  Evidence for carbonatite derived from the earth's crust: The late Paleoproterozoic carbonate-rich magmatic rocks in the southeast Tarim Craton, northwest China , 2021, Precambrian Research.

[2]  Yue-heng Yang,et al.  Crustal derivation of the ca. 475-Ma Eppawala carbonatites in Sri Lanka , 2021, Journal of Petrology.

[3]  P. Robinson,et al.  Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks , 2021 .

[4]  S. Agostini,et al.  The pyroclastic breccias from Cabezo Negro de Tallante (SE Spain): Is there any relation with carbonatitic magmatism? , 2021, Lithos.

[5]  S. Rajesh,et al.  Sediment-derived origin of the putative Munnar carbonatite, South India , 2020 .

[6]  S. Agostini,et al.  Strongly SiO2-undersaturated, CaO-rich kamafugitic Pleistocene magmatism in Central Italy (San Venanzo volcanic complex) and the role of shallow depth limestone assimilation , 2020 .

[7]  B. Su,et al.  U-Pb geochronology of zircons from river sediments in Sri Lanka: Implications on early Archean to late Cambrian magmatism and episodic crustal growth , 2019, Journal of Asian Earth Sciences.

[8]  Wei Chen,et al.  A Paleoproterozoic mantle source modified by subducted sediments under the North China craton , 2019, Geochimica et Cosmochimica Acta.

[9]  Chen Chen,et al.  Lithium isotopic composition of Alaskan-type intrusion and its implication , 2017 .

[10]  P. O'Brien,et al.  Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust , 2016 .

[11]  S. Agostini,et al.  Ca-rich carbonates associated with ultrabasic-ultramafic melts: Carbonatite or limestone xenoliths? A case study from the late Miocene Morron de Villamayor volcano (Calatrava Volcanic Field, central Spain) , 2016 .

[12]  E. Deloule,et al.  Lithium elemental and isotopic variations in rock-melt interaction , 2014 .

[13]  E. Deloule,et al.  Distinguishing silicate and carbonatite mantle metasomatism by using lithium and its isotopes , 2014 .

[14]  Yuri N. Palyanov,et al.  Partitioning of H2O between olivine and carbonate–silicate melts at 6.3 GPa and 1400 °C: Implications for kimberlite formation , 2013 .

[15]  S. Weyer,et al.  Coupled lithium- and iron isotope fractionation during magmatic differentiation , 2012 .

[16]  B. Lottermoser,et al.  Petrogenesis of the Eppawala carbonatites, Sri Lanka: A cathodoluminescence and electron microprobe study , 2012, Mineralogy and Petrology.

[17]  Ping Liu,et al.  Extremely high Li and low δ7Li signatures in the lithospheric mantle , 2012 .

[18]  D. Cornell,et al.  Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry , 2010 .

[19]  A. Steenfelt,et al.  The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite-kimberlite relationships , 2009 .

[20]  E. Watson,et al.  Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion , 2009 .

[21]  W. McDonough,et al.  Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts , 2009 .

[22]  F. Gaillard,et al.  Carbonatite Melts and Electrical Conductivity in the Asthenosphere , 2008, Science.

[23]  Y. Sawada,et al.  Genesis and evolution of Eppawala carbonatites, Sri Lanka , 2008 .

[24]  W. McDonough,et al.  Tracking the lithium isotopic evolution of the mantle using carbonatites , 2008 .

[25]  N. Rogers,et al.  High-temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems , 2007 .

[26]  Y. Lahaye,et al.  Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes , 2004 .

[27]  H. Keppler Water solubility in carbonatite melts , 2003 .

[28]  M. Schidlowski,et al.  Geochemical and petrological characteristics of Eppawala phosphate deposits, Sri Lanka , 2003 .

[29]  Y. Litvin,et al.  Experimental investigation of the effect of metasomatism by carbonatic melt on the composition and structure of the deep mantle , 2002 .

[30]  T. Miyazaki,et al.  Rb-Sr and Sm-Nd Geochronology of the Eppawala Metamorphic Rocks and Carbonatite, Wanni Complex, Sri Lanka , 2001 .

[31]  A. Woodland,et al.  The distribution of lithium in peridotitic and pyroxenitic mantle lithologies — an indicator of magmatic and metasomatic processes , 2000 .

[32]  D. Lentz Carbonatite genesis: A reexamination of the role of intrusion-related pneumatolytic skarn processes in limestone melting , 1999 .

[33]  D.J.A.C. Happurachchi On the origin of the Eppawala apatite deposits, Sri Lanka , 1996 .

[34]  V. Prozesky,et al.  Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18-46 kb pressure , 1995 .

[35]  D. Günther,et al.  Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions , 1995 .

[36]  P. G. Cooray The precambrian of Sri Lanka: a historical review , 1994 .

[37]  F. Stoppa,et al.  Mineralogy and petrology of the Polino Monticellite Calciocarbonatite (Central Italy) , 1993 .

[38]  S. Hart,et al.  Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle , 1993, Nature.

[39]  J. Adam,et al.  Trace element partitioning between silicate minerals and carbonatite at 25 kbar and application to mantle metasomatism , 1992 .

[40]  O. F. Tuttle,et al.  The System CaO–CO2–H2O and the Origin of Carbonatites , 1960 .

[41]  L. Baumgartner,et al.  An observational and thermodynamic investigation of carbonate partial melting , 2015 .

[42]  K. Bucher,et al.  Metamorphism of Dolomites and Limestones , 2011 .

[43]  S. Chakraborty,et al.  Diffusion of Li in olivine. Part I: Experimental observations and a multi species diffusion model , 2010 .

[44]  B. Kjarsgaard,et al.  Carbonatite occurrences of the world: map and database , 2008 .

[45]  H. Massonne,et al.  Carbonatite-like dykes from the eastern Himalayan syntaxis: geochemical, isotopic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust , 2006 .

[46]  R. Vannucci,et al.  Metasomatism and Melting in Carbonated Peridotite Xenoliths from the Mantle Wedge: The Gobernador Gregores Case (Southern Patagonia) , 2001 .

[47]  F. Siena,et al.  Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean , 1999 .

[48]  K. Shiraishi,et al.  Rb-Sr and Sm-Nd Ages from the Highland Complex of Sri Lanka. , 1995 .

[49]  J. Hoefs,et al.  Stable Isotope Characteristics of Recent Natrocarbonatites from Oldoinyo Lengai , 1995 .

[50]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.