Using Improved Robust Estimators to Semiparametric Model with High Dimensional Data

[1]  M. Arashi,et al.  Generalized Cross-Validation for Simultaneous Optimization of Tuning Parameters in Ridge Regression , 2020 .

[2]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[3]  K. Doksum,et al.  L 1 penalty and shrinkage estimation in partially linear models with random coefficient autoregressive errors , 2012 .

[4]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[5]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[6]  Jianqing Fan,et al.  A Selective Overview of Variable Selection in High Dimensional Feature Space. , 2009, Statistica Sinica.

[7]  Peter Bühlmann,et al.  High-Dimensional Statistics with a View Toward Applications in Biology , 2014 .

[8]  B. Iglewicz,et al.  Bivariate extensions of the boxplot , 1992 .

[9]  M. Arashi,et al.  Least-trimmed squares: asymptotic normality of robust estimator in semiparametric regression models , 2017 .

[10]  PETER J. ROUSSEEUW,et al.  Computing LTS Regression for Large Data Sets , 2005, Data Mining and Knowledge Discovery.

[11]  Sara van de Geer,et al.  Statistics for High-Dimensional Data , 2011 .

[12]  Sara van de Geer,et al.  Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .

[13]  Efficiency of the generalized difference-based Liu estimators in semiparametric regression models with correlated errors , 2015 .

[14]  S. Babaie-Kafaki,et al.  A revised Cholesky decomposition to combat multicollinearity in multiple regression models , 2017 .

[15]  Tri-Dung Nguyen,et al.  Outlier detection and least trimmed squares approximation using semi-definite programming , 2010, Comput. Stat. Data Anal..

[16]  Cun-Hui Zhang,et al.  The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.

[17]  M. Amini,et al.  Least trimmed squares ridge estimation in partially linear regression models , 2016 .

[18]  A. Rasekh,et al.  The weighted ridge estimator in stochastic restricted linear measurement error models , 2018 .

[19]  M. Arashi,et al.  Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data , 2019 .

[20]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[21]  Saralees Nadarajah,et al.  Improved preliminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model , 2014, J. Multivar. Anal..

[22]  Xinwei Deng,et al.  Estimation in high-dimensional linear models with deterministic design matrices , 2012, 1206.0847.

[23]  Morteza Amini,et al.  Optimal partial ridge estimation in restricted semiparametric regression models , 2015, J. Multivar. Anal..

[24]  S. Ahmed,et al.  Shrinkage Ridge Regression Estimators in High-Dimensional Linear Models , 2015 .

[25]  Mahdi Roozbeh,et al.  Robust ridge estimator in restricted semiparametric regression models , 2016, J. Multivar. Anal..

[26]  F. Akdeniz,et al.  Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models , 2019 .

[27]  Mahdi Roozbeh,et al.  Shrinkage ridge estimators in semiparametric regression models , 2015, J. Multivar. Anal..

[28]  Hu Yang,et al.  More on the unbiased ridge regression estimation , 2016 .

[29]  S. Babaie-Kafaki,et al.  Extended least trimmed squares estimator in semiparametric regression models with correlated errors , 2016 .

[30]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[31]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[32]  D. G. Simpson,et al.  On One-Step GM Estimates and Stability of Inferences in Linear Regression , 1992 .

[33]  S. M. M. Tabatabaey,et al.  Simple regression in view of elliptical models , 2012 .

[34]  Fikri Akdeniz,et al.  Restricted Ridge Estimators of the Parameters in Semiparametric Regression Model , 2009 .

[35]  Mohammad Arashi,et al.  Preliminary test and Stein estimations in simultaneous linear equations , 2012 .

[36]  Mahdi Roozbeh,et al.  Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion , 2018, Comput. Stat. Data Anal..

[37]  P. Bühlmann Statistical significance in high-dimensional linear models , 2013 .

[38]  M. Arashi,et al.  Shrinkage ridge regression in partial linear models , 2016 .

[39]  Mohammad Arashi,et al.  Performance of Kibria’s methods in partial linear ridge regression model , 2015 .

[40]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[41]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[42]  Mohammad Arashi,et al.  Feasible ridge estimator in partially linear models , 2013, J. Multivar. Anal..

[43]  Peter Buhlmann Statistical significance in high-dimensional linear models , 2012, 1202.1377.

[44]  A. K. Md. Ehsanes Saleh,et al.  Theory of preliminary test and Stein-type estimation with applications , 2006 .

[45]  A. K. Md. Ehsanes Saleh,et al.  Estimation of parameters of parallelism model with elliptically distributed errors , 2010 .

[46]  Wolfgang K. Härdle,et al.  Difference Based Ridge and Liu Type Estimators in Semiparametric Regression Models , 2011, J. Multivar. Anal..

[47]  Mohammad Arashi,et al.  Improved variance estimation under sub-space restriction , 2009, J. Multivar. Anal..