Using Improved Robust Estimators to Semiparametric Model with High Dimensional Data
暂无分享,去创建一个
[1] M. Arashi,et al. Generalized Cross-Validation for Simultaneous Optimization of Tuning Parameters in Ridge Regression , 2020 .
[2] P. Rousseeuw. Least Median of Squares Regression , 1984 .
[3] K. Doksum,et al. L 1 penalty and shrinkage estimation in partially linear models with random coefficient autoregressive errors , 2012 .
[4] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[5] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[6] Jianqing Fan,et al. A Selective Overview of Variable Selection in High Dimensional Feature Space. , 2009, Statistica Sinica.
[7] Peter Bühlmann,et al. High-Dimensional Statistics with a View Toward Applications in Biology , 2014 .
[8] B. Iglewicz,et al. Bivariate extensions of the boxplot , 1992 .
[9] M. Arashi,et al. Least-trimmed squares: asymptotic normality of robust estimator in semiparametric regression models , 2017 .
[10] PETER J. ROUSSEEUW,et al. Computing LTS Regression for Large Data Sets , 2005, Data Mining and Knowledge Discovery.
[11] Sara van de Geer,et al. Statistics for High-Dimensional Data , 2011 .
[12] Sara van de Geer,et al. Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .
[13] Efficiency of the generalized difference-based Liu estimators in semiparametric regression models with correlated errors , 2015 .
[14] S. Babaie-Kafaki,et al. A revised Cholesky decomposition to combat multicollinearity in multiple regression models , 2017 .
[15] Tri-Dung Nguyen,et al. Outlier detection and least trimmed squares approximation using semi-definite programming , 2010, Comput. Stat. Data Anal..
[16] Cun-Hui Zhang,et al. The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.
[17] M. Amini,et al. Least trimmed squares ridge estimation in partially linear regression models , 2016 .
[18] A. Rasekh,et al. The weighted ridge estimator in stochastic restricted linear measurement error models , 2018 .
[19] M. Arashi,et al. Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data , 2019 .
[20] V. Yohai. HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .
[21] Saralees Nadarajah,et al. Improved preliminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model , 2014, J. Multivar. Anal..
[22] Xinwei Deng,et al. Estimation in high-dimensional linear models with deterministic design matrices , 2012, 1206.0847.
[23] Morteza Amini,et al. Optimal partial ridge estimation in restricted semiparametric regression models , 2015, J. Multivar. Anal..
[24] S. Ahmed,et al. Shrinkage Ridge Regression Estimators in High-Dimensional Linear Models , 2015 .
[25] Mahdi Roozbeh,et al. Robust ridge estimator in restricted semiparametric regression models , 2016, J. Multivar. Anal..
[26] F. Akdeniz,et al. Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models , 2019 .
[27] Mahdi Roozbeh,et al. Shrinkage ridge estimators in semiparametric regression models , 2015, J. Multivar. Anal..
[28] Hu Yang,et al. More on the unbiased ridge regression estimation , 2016 .
[29] S. Babaie-Kafaki,et al. Extended least trimmed squares estimator in semiparametric regression models with correlated errors , 2016 .
[30] Peter J. Rousseeuw,et al. Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.
[31] A. E. Hoerl,et al. Ridge Regression: Applications to Nonorthogonal Problems , 1970 .
[32] D. G. Simpson,et al. On One-Step GM Estimates and Stability of Inferences in Linear Regression , 1992 .
[33] S. M. M. Tabatabaey,et al. Simple regression in view of elliptical models , 2012 .
[34] Fikri Akdeniz,et al. Restricted Ridge Estimators of the Parameters in Semiparametric Regression Model , 2009 .
[35] Mohammad Arashi,et al. Preliminary test and Stein estimations in simultaneous linear equations , 2012 .
[36] Mahdi Roozbeh,et al. Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion , 2018, Comput. Stat. Data Anal..
[37] P. Bühlmann. Statistical significance in high-dimensional linear models , 2013 .
[38] M. Arashi,et al. Shrinkage ridge regression in partial linear models , 2016 .
[39] Mohammad Arashi,et al. Performance of Kibria’s methods in partial linear ridge regression model , 2015 .
[40] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[41] Wolfgang Härdle,et al. Partially Linear Models , 2000 .
[42] Mohammad Arashi,et al. Feasible ridge estimator in partially linear models , 2013, J. Multivar. Anal..
[43] Peter Buhlmann. Statistical significance in high-dimensional linear models , 2012, 1202.1377.
[44] A. K. Md. Ehsanes Saleh,et al. Theory of preliminary test and Stein-type estimation with applications , 2006 .
[45] A. K. Md. Ehsanes Saleh,et al. Estimation of parameters of parallelism model with elliptically distributed errors , 2010 .
[46] Wolfgang K. Härdle,et al. Difference Based Ridge and Liu Type Estimators in Semiparametric Regression Models , 2011, J. Multivar. Anal..
[47] Mohammad Arashi,et al. Improved variance estimation under sub-space restriction , 2009, J. Multivar. Anal..