A Globally Convergent Filter-Trust-Region Method for Large Deformation Contact Problems

We present a globally convergent method for the solution of frictionless large deformation contact problems for hyperelastic materials. The discretisation uses the mortar method which is known to be more stable than node-to-segment approaches. The resulting non-convex constrained minimisation problems are solved using a filter-trust-region scheme, and we prove global convergence towards first-order optimal points. The constrained Newton problems are solved robustly and efficiently using a Truncated Non-smooth Newton Multigrid (TNNMG) method with a Monotone Multigrid (MMG) linear correction step. For this we introduce a cheap basis transformation that decouples the contact constraints. Numerical experiments confirm the stability and efficiency of our approach.

[1]  Jonathan William Youett Dynamic large deformation contact problems and applications in virtual medicine , 2016 .

[2]  Stefan Ulbrich On the superlinear local convergence of a filter-SQP method , 2004, Math. Program..

[3]  J. C. Simo,et al.  A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems , 1993 .

[4]  Oliver Sander,et al.  Multidimensional coupling in a human knee model , 2008 .

[5]  Christian Hesch,et al.  Mechanische Integratoren für Kontaktvorgänge deformierbarer Körper unter großen Verzerrungen , 2008 .

[6]  P. Tallec,et al.  Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .

[7]  Wolfgang A. Wall,et al.  Finite deformation contact based on a 3D dual mortar and semi-smooth Newton approach , 2011 .

[8]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[9]  Oliver Sander,et al.  Infrastructure for the Coupling of Dune Grids , 2010 .

[10]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[11]  P. Wriggers,et al.  A mortar-based frictional contact formulation for large deformations using Lagrange multipliers , 2009 .

[12]  M. Puso,et al.  A mortar segment-to-segment contact method for large deformation solid mechanics , 2004 .

[13]  LeyfferSven,et al.  Global Convergence of a Trust-Region SQP-Filter Algorithm for General Nonlinear Programming , 2002 .

[14]  F. Armero,et al.  Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .

[15]  Ekkehard Ramm,et al.  Unilateral non‐linear dynamic contact of thin‐walled structures using a primal‐dual active set strategy , 2007 .

[16]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[17]  Ralf Kornhuber,et al.  Multigrid Methods for Obstacle Problems , 2008 .

[18]  Barbara Wohlmuth,et al.  A primal–dual active set strategy for non-linear multibody contact problems , 2005 .

[19]  Andreas Dedner,et al.  The Distributed and Unified Numerics Environment,Version 2.4 , 2016 .

[20]  Ekkehard Ramm,et al.  A mortar based contact formulation for non-linear dynamics using dual Lagrange multipliers , 2008 .

[21]  Andreas Dedner,et al.  The Distributed and Unified Numerics Environment (DUNE) , 2006 .

[22]  Nicholas I. M. Gould,et al.  Global Convergence of a Trust-Region SQP-Filter Algorithm for General Nonlinear Programming , 2002, SIAM J. Optim..

[23]  R. Krause,et al.  Monotone methods on non-matching grids for non-linear contact problems , 2003 .

[24]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[25]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[26]  Oliver Sander,et al.  Truncated Nonsmooth Newton Multigrid Methods for Convex Minimization Problems , 2009 .

[27]  Peter Betsch,et al.  A mortar method for energy‐momentum conserving schemes in frictionless dynamic contact problems , 2009 .

[28]  T. Laursen,et al.  Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.

[29]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[30]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[31]  Nicholas I. M. Gould,et al.  Global Convergence of a Class of Trust Region Algorithms for Optimization Using Inexact Projections on Convex Constraints , 1993, SIAM J. Optim..

[32]  Martin J. Gander,et al.  An Algorithm for Non-Matching Grid Projections with Linear Complexity , 2009 .

[33]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[34]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[35]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[36]  P. Wriggers Computational contact mechanics , 2012 .