Lytic transglycosylases: concinnity in concision of the bacterial cell wall

Abstract The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure–function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes. Graphical Abstract

[1]  R. Molina,et al.  Carbohydrate recognition and lysis by bacterial peptidoglycan hydrolases. , 2017, Current Opinion in Structural Biology.

[2]  W. Keller,et al.  Conjugative type IV secretion in Gram-positive pathogens: TraG, a lytic transglycosylase and endopeptidase, interacts with translocation channel protein TraM. , 2017, Plasmid.

[3]  D. Weiss,et al.  The SPOR Domain, a Widely Conserved Peptidoglycan Binding Domain That Targets Proteins to the Site of Cell Division , 2017, Journal of bacteriology.

[4]  K. Peters,et al.  Robust peptidoglycan growth by dynamic and variable multi-protein complexes. , 2017, Current opinion in microbiology.

[5]  R. Lewis,et al.  Regulation of bacterial cell wall growth , 2017, The FEBS journal.

[6]  R. Lewis The GpsB files: the truth is out there , 2017, Molecular Microbiology.

[7]  C. Yost,et al.  An uncharacterized gene coding a conserved lytic transglycosylase domain (RL4716) is required for proper cell envelope function in Rhizobium leguminosarum , 2017, FEMS microbiology letters.

[8]  A. K. Criss,et al.  Two lytic transglycosylases in Neisseria gonorrhoeae impart resistance to killing by lysozyme and human neutrophils , 2017, Cellular microbiology.

[9]  David A. Dik,et al.  From Genome to Proteome to Elucidation of Reactions for All Eleven Known Lytic Transglycosylases from Pseudomonas aeruginosa. , 2017, Angewandte Chemie.

[10]  M. Winkler,et al.  Suppression and synthetic‐lethal genetic relationships of ΔgpsB mutations indicate that GpsB mediates protein phosphorylation and penicillin‐binding protein interactions in Streptococcus pneumoniae D39 , 2017, Molecular microbiology.

[11]  E. Breukink,et al.  Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis , 2017, Scientific Reports.

[12]  A. Williams,et al.  Bulgecin A: The Key to a Broad-Spectrum Inhibitor That Targets Lytic Transglycosylases , 2017, Antibiotics.

[13]  David A. Dik,et al.  Muropeptide Binding and the X-ray Structure of the Effector Domain of the Transcriptional Regulator AmpR of Pseudomonas aeruginosa. , 2017, Journal of the American Chemical Society.

[14]  K. Fukase,et al.  Synthesis of Peptidoglycan Fragments from Enterococcus faecalis with Fmoc-Strategy for Glycan Elongation. , 2017, Chemistry, an Asian journal.

[15]  E. Cascales,et al.  Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system , 2017, EMBO reports.

[16]  Seok-Yong Lee,et al.  Crystal structure of the MOP flippase MurJ in an inward-facing conformation , 2016, Nature Structural &Molecular Biology.

[17]  N. Ruiz Filling holes in peptidoglycan biogenesis of Escherichia coli. , 2016, Current opinion in microbiology.

[18]  A. Clarke,et al.  Controlling Autolysis During Flagella Insertion in Gram-Negative Bacteria. , 2016, Advances in experimental medicine and biology.

[19]  David A. Dik,et al.  Activation by Allostery in Cell-Wall Remodeling by a Modular Membrane-Bound Lytic Transglycosylase from Pseudomonas aeruginosa. , 2016, Structure.

[20]  C. Dekker,et al.  Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division , 2016, Science.

[21]  K. C. Huang,et al.  GTPase activity–coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis , 2016, Science.

[22]  Marion J. Skalweit,et al.  Bulgecin A as a β-lactam enhancer for carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii clinical isolates containing various resistance mechanisms , 2016, Drug design, development and therapy.

[23]  R. Molina,et al.  Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens. , 2016, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[24]  S. Mobashery,et al.  Lytic transglycosylases LtgA and LtgD perform distinct roles in remodeling, recycling and releasing peptidoglycan in Neisseria gonorrhoeae , 2016, Molecular Microbiology.

[25]  Zhongyu Li,et al.  The role of NOD1 and NOD2 in host defense against chlamydial infection. , 2016, FEMS microbiology letters.

[26]  J. P. Dillard,et al.  Neisseria gonorrhoeae Crippled Its Peptidoglycan Fragment Permease To Facilitate Toxic Peptidoglycan Monomer Release , 2016, Journal of bacteriology.

[27]  B. Lemaître,et al.  Chemometric Analysis of Bacterial Peptidoglycan Reveals Atypical Modifications That Empower the Cell Wall against Predatory Enzymes and Fly Innate Immunity. , 2016, Journal of the American Chemical Society.

[28]  G. Núñez,et al.  Innate Immunity: ER Stress Recruits NOD1 and NOD2 for Delivery of Inflammation , 2016, Current Biology.

[29]  K. Mathee,et al.  Muropeptides in Pseudomonas aeruginosa and their Role as Elicitors of β-Lactam-Antibiotic Resistance. , 2016, Angewandte Chemie.

[30]  M. Winkler,et al.  Suppression of a deletion mutation in the gene encoding essential PBP2b reveals a new lytic transglycosylase involved in peripheral peptidoglycan synthesis in Streptococcus pneumoniae D39 , 2016, Molecular microbiology.

[31]  R. Pratt β-Lactamases: Why and How. , 2016, Journal of medicinal chemistry.

[32]  G. Minasov,et al.  Crystal Structures of the SpoIID Lytic Transglycosylases Essential for Bacterial Sporulation* , 2016, The Journal of Biological Chemistry.

[33]  G. Dreyfus,et al.  Modulation of the Lytic Activity of the Dedicated Autolysin for Flagellum Formation SltF by Flagellar Rod Proteins FlgB and FlgF , 2016, Journal of bacteriology.

[34]  Chao-Jung Wu,et al.  Inactivation of Lytic Transglycosylases Increases Susceptibility to Aminoglycosides and Macrolides by Altering the Outer Membrane Permeability of Stenotrophomonas maltophilia , 2016, Antimicrobial Agents and Chemotherapy.

[35]  T. Bernhardt,et al.  Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria , 2016, Molecular microbiology.

[36]  G. Davies,et al.  A Convenient Approach to Stereoisomeric Iminocyclitols: Generation of Potent Brain-Permeable OGA Inhibitors. , 2015, Angewandte Chemie.

[37]  Menno B. Tol,et al.  LipidII: Just Another Brick in the Wall? , 2015, PLoS pathogens.

[38]  Xing Ye,et al.  Antibacterial Activity of Stenotrophomonas maltophilia Endolysin P28 against both Gram-positive and Gram-negative Bacteria , 2015, Front. Microbiol..

[39]  R. Berisio,et al.  The structure of Resuscitation promoting factor B from M. tuberculosis reveals unexpected ubiquitin-like domains. , 2015, Biochimica et biophysica acta.

[40]  Jun Lin,et al.  Important Role of a Putative Lytic Transglycosylase Cj0843c in β-Lactam Resistance in Campylobacter jejuni , 2015, Front. Microbiol..

[41]  D. Underhill,et al.  Poorly Cross-Linked Peptidoglycan in MRSA Due to mecA Induction Activates the Inflammasome and Exacerbates Immunopathology. , 2015, Cell host & microbe.

[42]  F. Cava,et al.  High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography* , 2015, The Journal of Biological Chemistry.

[43]  L. Burrows,et al.  Loss of membrane‐bound lytic transglycosylases increases outer membrane permeability and β‐lactam sensitivity in Pseudomonas aeruginosa , 2015, MicrobiologyOpen.

[44]  D. Weiss,et al.  Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides , 2015, Proceedings of the National Academy of Sciences.

[45]  Chao-Jung Wu,et al.  Interplay among Membrane-Bound Lytic Transglycosylase D1, the CreBC Two-Component Regulatory System, the AmpNG-AmpDI-NagZ-AmpR Regulatory Circuit, and L1/L2 β-Lactamase Expression in Stenotrophomonas maltophilia , 2015, Antimicrobial Agents and Chemotherapy.

[46]  W. Vollmer,et al.  The stoichiometric divisome: a hypothesis , 2015, Front. Microbiol..

[47]  C. Gross,et al.  MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis , 2015, Proceedings of the National Academy of Sciences.

[48]  Giovanni Suarez,et al.  Modification of Helicobacter pylori Peptidoglycan Enhances NOD1 Activation and Promotes Cancer of the Stomach. , 2015, Cancer research.

[49]  B. Finlay,et al.  Structural Analysis of a Specialized Type III Secretion System Peptidoglycan-cleaving Enzyme* , 2015, The Journal of Biological Chemistry.

[50]  C. Mayer,et al.  Peptidoglycan perception--sensing bacteria by their common envelope structure. , 2015, International journal of medical microbiology : IJMM.

[51]  Trushar R. Patel,et al.  The beta-Lactamase Gene Regulator AmpR Is a Tetramer That Recognizes and Binds the d-Ala-d-Ala Motif of Its Repressor UDP-N-acetylmuramic Acid (MurNAc)-pentapeptide. , 2014 .

[52]  M. Stahl,et al.  From cells to muropeptide structures in 24 h: Peptidoglycan mapping by UPLC-MS , 2014, Scientific Reports.

[53]  Henry J. Haiser,et al.  Resuscitation-Promoting Factors Are Cell Wall-Lytic Enzymes with Important Roles in the Germination and Growth of Streptomyces coelicolor , 2014, Journal of bacteriology.

[54]  Trushar R. Patel,et al.  The β-Lactamase Gene Regulator AmpR Is a Tetramer That Recognizes and Binds the d-Ala-d-Ala Motif of Its Repressor UDP-N-acetylmuramic Acid (MurNAc)-pentapeptide* , 2014, The Journal of Biological Chemistry.

[55]  T. Bernhardt,et al.  Beta-Lactam Antibiotics Induce a Lethal Malfunctioning of the Bacterial Cell Wall Synthesis Machinery , 2014, Cell.

[56]  Casey B. Bernhards,et al.  HtrC Is Involved in Proteolysis of YpeB during Germination of Bacillus anthracis and Bacillus subtilis Spores , 2014, Journal of bacteriology.

[57]  S. Mobashery,et al.  The sentinel role of peptidoglycan recycling in the β-lactam resistance of the Gram-negative Enterobacteriaceae and Pseudomonas aeruginosa. , 2014, Bioorganic chemistry.

[58]  P. Moynihan,et al.  The Essential Protein for Bacterial Flagella Formation FlgJ Functions as a β-N-Acetylglucosaminidase* , 2014, The Journal of Biological Chemistry.

[59]  K. Mathee,et al.  Pseudomonas aeruginosa AmpR: an acute-chronic switch regulator. , 2014, Pathogens and disease.

[60]  D. Weiss Faculty Opinions recommendation of Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. , 2014 .

[61]  Lok-To Sham,et al.  MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis , 2014, Science.

[62]  J. Hermoso,et al.  Structure and Cell Wall Cleavage by Modular Lytic Transglycosylase MltC of Escherichia coli , 2014, ACS chemical biology.

[63]  D. Popham,et al.  The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa , 2014, Molecular microbiology.

[64]  G. Eberl,et al.  The biology of bacterial peptidoglycans and their impact on host immunity and physiology , 2014, Cellular microbiology.

[65]  M. Karp,et al.  TgaA, a VirB1-Like Component Belonging to a Putative Type IV Secretion System of Bifidobacterium bifidum MIMBb75 , 2014, Applied and Environmental Microbiology.

[66]  M. Kelliher,et al.  Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response , 2014, Innate immunity.

[67]  B. de Kruijff,et al.  Specificity of the Transport of Lipid II by FtsW in Escherichia coli* , 2014, The Journal of Biological Chemistry.

[68]  B. Maček,et al.  Interplay of the Serine/Threonine-Kinase StkP and the Paralogs DivIVA and GpsB in Pneumococcal Cell Elongation and Division , 2014, PLoS genetics.

[69]  T. Alber,et al.  Mycobacterium tuberculosis RpfE crystal structure reveals a positively charged catalytic cleft , 2014, Protein science : a publication of the Protein Society.

[70]  Peter Setlow,et al.  Germination of Spores of Bacillus Species: What We Know and Do Not Know , 2014, Journal of bacteriology.

[71]  D. Philpott,et al.  NOD proteins: regulators of inflammation in health and disease , 2013, Nature Reviews Immunology.

[72]  W. Vollmer,et al.  From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? , 2013, Environmental microbiology.

[73]  J. Löwe,et al.  Do the divisome and elongasome share a common evolutionary past? , 2013, Current opinion in microbiology.

[74]  M. Bramkamp,et al.  The lipid II flippase RodA determines morphology and growth in Corynebacterium glutamicum , 2013, Molecular microbiology.

[75]  L. Hellman,et al.  Cell-wall remodeling by the zinc-protease AmpDh3 from Pseudomonas aeruginosa. , 2013, Journal of the American Chemical Society.

[76]  N. Ruiz,et al.  Structure-Function Analysis of MurJ Reveals a Solvent-Exposed Cavity Containing Residues Essential for Peptidoglycan Biogenesis in Escherichia coli , 2013, Journal of bacteriology.

[77]  L. Hellman,et al.  Reaction products and the X-ray structure of AmpDh2, a virulence determinant of Pseudomonas aeruginosa. , 2013, Journal of the American Chemical Society.

[78]  R. Berisio,et al.  Carbohydrate recognition by RpfB from Mycobacterium tuberculosis unveiled by crystallographic and molecular dynamics analyses. , 2013, Biophysical journal.

[79]  L. Burrows,et al.  Changes to Its Peptidoglycan-Remodeling Enzyme Repertoire Modulate β-Lactam Resistance in Pseudomonas aeruginosa , 2013, Antimicrobial Agents and Chemotherapy.

[80]  G. Korza,et al.  Activity and Regulation of Various Forms of CwlJ, SleB, and YpeB Proteins in Degrading Cortex Peptidoglycan of Spores of Bacillus Species In Vitro and during Spore Germination , 2013, Journal of bacteriology.

[81]  Hualiang Pi,et al.  Reactions of all Escherichia coli lytic transglycosylases with bacterial cell wall. , 2013, Journal of the American Chemical Society.

[82]  S. Mobashery,et al.  Bacterial cell‐wall recycling , 2013, Annals of the New York Academy of Sciences.

[83]  Alexander J. F. Egan,et al.  The physiology of bacterial cell division , 2013, Annals of the New York Academy of Sciences.

[84]  A. Thunnissen,et al.  On the mechanism of peptidoglycan binding and cleavage by the endo-specific lytic transglycosylase MltE from Escherichia coli. , 2012, Biochemistry.

[85]  Steffen Backert,et al.  Peptidoglycan maturation enzymes affect flagellar functionality in bacteria , 2012, Molecular microbiology.

[86]  D. Popham,et al.  The catalytic domain of the germination‐specific lytic transglycosylase SleB from Bacillus anthracis displays a unique active site topology , 2012, Proteins.

[87]  B. Grymonprez,et al.  Characterization of five novel endolysins from Gram-negative infecting bacteriophages , 2012, Applied Microbiology and Biotechnology.

[88]  E. Breukink,et al.  Cooperativity of peptidoglycan synthases active in bacterial cell elongation , 2012, Molecular microbiology.

[89]  P. Setlow,et al.  Crystal Structure of the Catalytic Domain of the Bacillus cereus SleB Protein, Important in Cortex Peptidoglycan Degradation during Spore Germination , 2012, Journal of bacteriology.

[90]  L. Camarena,et al.  The C Terminus of the Flagellar Muramidase SltF Modulates the Interaction with FlgJ in Rhodobacter sphaeroides , 2012, Journal of bacteriology.

[91]  N. Thielens,et al.  Calcium-dependent complex formation between PBP2 and lytic transglycosylase SltB1 of Pseudomonas aeruginosa. , 2012, Microbial drug resistance.

[92]  J. P. Dillard,et al.  The lytic transglycosylases of Neisseria gonorrhoeae. , 2012, Microbial drug resistance.

[93]  S. Guadagnini,et al.  The effect of bulgecin A on peptidoglycan metabolism and physiology of Helicobacter pylori. , 2012, Microbial drug resistance.

[94]  S. Mobashery,et al.  Messenger functions of the bacterial cell wall-derived muropeptides. , 2012, Biochemistry.

[95]  M. de Pedro,et al.  Escherichia coli low‐molecular‐weight penicillin‐binding proteins help orient septal FtsZ, and their absence leads to asymmetric cell division and branching , 2012, Molecular microbiology.

[96]  A. Oliver,et al.  Inhibitors for Bacterial Cell-Wall Recycling. , 2012, ACS medicinal chemistry letters.

[97]  C. Gross,et al.  From the regulation of peptidoglycan synthesis to bacterial growth and morphology , 2011, Nature Reviews Microbiology.

[98]  P. Moynihan,et al.  O-Acetylated peptidoglycan: controlling the activity of bacterial autolysins and lytic enzymes of innate immune systems. , 2011, The international journal of biochemistry & cell biology.

[99]  J. Heijenoort Peptidoglycan Hydrolases of Escherichia coli , 2011 .

[100]  D. Philpott,et al.  Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis , 2011, Immunological reviews.

[101]  C. Mayer,et al.  Peptidoglycan turnover and recycling in Gram-positive bacteria , 2011, Applied Microbiology and Biotechnology.

[102]  L. Burrows,et al.  Maintaining network security: how macromolecular structures cross the peptidoglycan layer. , 2011, FEMS microbiology letters.

[103]  J. Hermoso,et al.  Crystal Structure of an Outer Membrane-Anchored Endolytic Peptidoglycan Lytic Transglycosylase (MltE) from Escherichia coli , 2011 .

[104]  G. Dreyfus,et al.  The muramidase EtgA from enteropathogenic Escherichia coli is required for efficient type III secretion. , 2011, Microbiology.

[105]  T. Vernet,et al.  Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane , 2011, The EMBO journal.

[106]  J. Hermoso,et al.  High-resolution crystal structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli. , 2011, Biochemistry.

[107]  P. Breheny,et al.  Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence , 2011, Molecular microbiology.

[108]  R. Wintjens,et al.  Structural Relationships in the Lysozyme Superfamily: Significant Evidence for Glycoside Hydrolase Signature Motifs , 2010, PloS one.

[109]  D. Popham,et al.  In Vitro Studies of Peptidoglycan Binding and Hydrolysis by the Bacillus anthracis Germination-Specific Lytic Enzyme SleB , 2010, Journal of bacteriology.

[110]  K. Young Bacterial shape: two-dimensional questions and possibilities. , 2010, Annual review of microbiology.

[111]  C. Lowe,et al.  Mutational Analysis of Bacillus megaterium QM B1551 Cortex-Lytic Enzymes , 2010, Journal of bacteriology.

[112]  L. Donald,et al.  Crystal structure of the AmpR effector binding domain provides insight into the molecular regulation of inducible ampc beta-lactamase. , 2010, Journal of molecular biology.

[113]  E. Rubin,et al.  Interaction and Modulation of Two Antagonistic Cell Wall Enzymes of Mycobacteria , 2010, PLoS pathogens.

[114]  A. Thunnissen,et al.  Purification, crystallization and preliminary X-ray diffraction analysis of the lytic transglycosylase MltF from Escherichia coli. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[115]  T. Silhavy,et al.  The bacterial cell envelope. , 2010, Cold Spring Harbor perspectives in biology.

[116]  C. Mayer,et al.  Muropeptide Rescue in Bacillus subtilis Involves Sequential Hydrolysis by β-N-Acetylglucosaminidase and N-Acetylmuramyl-l-Alanine Amidase , 2010, Journal of bacteriology.

[117]  K. Pogliano,et al.  SpoIID-Mediated Peptidoglycan Degradation Is Required throughout Engulfment during Bacillus subtilis Sporulation , 2010, Journal of bacteriology.

[118]  Edie M. Scheurwater,et al.  The Vertebrate Lysozyme Inhibitor Ivy Functions to Inhibit the Activity of Lytic Transglycosylase* , 2010, The Journal of Biological Chemistry.

[119]  D. Rudner,et al.  A highly coordinated cell wall degradation machine governs spore morphogenesis in Bacillus subtilis. , 2010, Genes & development.

[120]  Waldemar Vollmer,et al.  Architecture of peptidoglycan: more data and more models. , 2010, Trends in microbiology.

[121]  D. Popham,et al.  Contributions of Four Cortex Lytic Enzymes to Germination of Bacillus anthracis Spores , 2009, Journal of bacteriology.

[122]  J. Heap,et al.  SleC Is Essential for Germination of Clostridium difficile Spores in Nutrient-Rich Medium Supplemented with the Bile Salt Taurocholate , 2009, Journal of bacteriology.

[123]  G. Davies,et al.  Glycosidase inhibition: assessing mimicry of the transition state , 2009, Organic & biomolecular chemistry.

[124]  D. Popham,et al.  Discovery and Characterization of Three New Escherichia coli Septal Ring Proteins That Contain a SPOR Domain: DamX, DedD, and RlpA , 2009, Journal of bacteriology.

[125]  P. D. de Boer,et al.  Self-Enhanced Accumulation of FtsN at Division Sites and Roles for Other Proteins with a SPOR Domain (DamX, DedD, and RlpA) in Escherichia coli Cell Constriction , 2009, Journal of bacteriology.

[126]  P. Hanna,et al.  The Germination-Specific Lytic Enzymes SleB, CwlJ1, and CwlJ2 Each Contribute to Bacillus anthracis Spore Germination and Virulence , 2009, Journal of bacteriology.

[127]  P. Setlow,et al.  Characterization of the germination of Bacillus megaterium spores lacking enzymes that degrade the spore cortex , 2009, Journal of applied microbiology.

[128]  T. Emge,et al.  GlcNAc-Thiazoline conformations. , 2009, Bioorganic & medicinal chemistry.

[129]  D. Paredes-Sabja,et al.  SleC Is Essential for Cortex Peptidoglycan Hydrolysis during Germination of Spores of the Pathogenic Bacterium Clostridium perfringens , 2009, Journal of bacteriology.

[130]  D. Popham,et al.  Roles of Germination-Specific Lytic Enzymes CwlJ and SleB in Bacillus anthracis , 2009, Journal of bacteriology.

[131]  W. Goldman,et al.  Mutations in ampG and Lytic Transglycosylase Genes Affect the Net Release of Peptidoglycan Monomers from Vibrio fischeri , 2008, Journal of bacteriology.

[132]  K. Fukase,et al.  Synthesis of diaminopimelic acid containing peptidoglycan fragments and tracheal cytotoxin (TCT) and investigation of their biological functions. , 2008, Chemistry.

[133]  W. Vollmer,et al.  Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. , 2008, Biochimica et biophysica acta.

[134]  J. M. Guss,et al.  Acta Crystallographica Section F: Structural Biology and Crystallization Communications , 2008 .

[135]  B. A. Legaree,et al.  Interaction of Penicillin-Binding Protein 2 with Soluble Lytic Transglycosylase B1 in Pseudomonas aeruginosa , 2008, Journal of bacteriology.

[136]  M. Mhlanga,et al.  Novel Inner Membrane Retention Signals in Pseudomonas aeruginosa Lipoproteins , 2008, Journal of bacteriology.

[137]  Karen A. Cloud-Hansen,et al.  Neisseria gonorrhoeae Uses Two Lytic Transglycosylases To Produce Cytotoxic Peptidoglycan Monomers , 2008, Journal of bacteriology.

[138]  G. Cornelis,et al.  The type III secretion system tip complex and translocon , 2008, Molecular microbiology.

[139]  James T. Park,et al.  Growth of Escherichia coli: Significance of Peptidoglycan Degradation during Elongation and Septation , 2008, Journal of bacteriology.

[140]  Edie M. Scheurwater,et al.  The C-terminal Domain of Escherichia coli YfhD Functions as a Lytic Transglycosylase* , 2008, Journal of Biological Chemistry.

[141]  M. Rossmann,et al.  Structure of the Bacteriophage φKZ Lytic Transglycosylase gp144* , 2008, Journal of Biological Chemistry.

[142]  D. Blanot,et al.  Cytoplasmic steps of peptidoglycan biosynthesis. , 2008, FEMS microbiology reviews.

[143]  T. Bugg,et al.  The biosynthesis of peptidoglycan lipid-linked intermediates. , 2008, FEMS microbiology reviews.

[144]  D. Paredes-Sabja,et al.  Clostridium perfringens Spore Germination: Characterization of Germinants and Their Receptors , 2007, Journal of bacteriology.

[145]  B. A. Legaree,et al.  Role of Ser216 in the mechanism of action of membrane‐bound lytic transglycosylase B: Further evidence for substrate‐assisted catalysis , 2007, FEBS letters.

[146]  L. Camarena,et al.  The Flagellar Muramidase from the Photosynthetic Bacterium Rhodobacter sphaeroides , 2007, Journal of bacteriology.

[147]  P. Zambryski,et al.  VirB1* Promotes T-Pilus Formation in the vir-Type IV Secretion System of Agrobacterium tumefaciens , 2007, Journal of bacteriology.

[148]  Petra L. Kohler,et al.  AtlA Functions as a Peptidoglycan Lytic Transglycosylase in the Neisseria gonorrhoeae Type IV Secretion System , 2007, Journal of bacteriology.

[149]  B. A. Legaree,et al.  Overproduction of Penicillin-Binding Protein 2 and Its Inactive Variants Causes Morphological Changes and Lysis in Escherichia coli , 2007, Journal of bacteriology.

[150]  T. Yoshimura,et al.  Mode of Action of a Germination-Specific Cortex-Lytic Enzyme, SleC, of Clostridium perfringens S40 , 2007, Bioscience, biotechnology, and biochemistry.

[151]  R. Losick,et al.  Engulfment during sporulation in Bacillus subtilis is governed by a multi‐protein complex containing tandemly acting autolysins , 2007, Molecular microbiology.

[152]  Gang Liu,et al.  Cloning and Identification of a Gene Encoding Spore Cortex-Lytic Enzyme in Bacillus thuringiensis , 2007, Current Microbiology.

[153]  C. Baron,et al.  Targeting bacterial secretion systems: benefits of disarmament in the microcosm. , 2007, Infectious disorders drug targets.

[154]  A. Labigne,et al.  Characterization of Helicobacter pylori Lytic Transglycosylases Slt and MltD , 2006, Journal of bacteriology.

[155]  A. Imberty,et al.  LysM domains of Medicago truncatula NFP protein involved in Nod factor perception. Glycosylation state, molecular modeling and docking of chitooligosaccharides and Nod factors. , 2006, Glycobiology.

[156]  P. Setlow Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals , 2006, Journal of applied microbiology.

[157]  A. Moir,et al.  How do spores germinate? , 2006, Journal of applied microbiology.

[158]  Julian Parkhill,et al.  The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome , 2006, Nature Genetics.

[159]  B. Henderson,et al.  Wake up! Peptidoglycan lysis and bacterial non-growth states. , 2006, Trends in microbiology.

[160]  Zhi-jie Liu,et al.  Crystal structures of the lytic transglycosylase MltA from N.gonorrhoeae and E.coli: insights into interdomain movements and substrate binding. , 2006, Journal of molecular biology.

[161]  J. Deisenhofer,et al.  Structure of Tracheal Cytotoxin in Complex with a Heterodimeric Pattern-Recognition Receptor , 2006, Science.

[162]  C. Costa,et al.  High-level resistance to mecillinam produced by inactivation of soluble lytic transglycosylase in Salmonella enterica serovar Typhimurium. , 2006, FEMS microbiology letters.

[163]  V. Mesyanzhinov,et al.  Properties of the endolytic transglycosylase encoded by gene 144 of Pseudomonas aeruginosa bacteriophage phiKZ , 2006, Biochemistry (Moscow).

[164]  N. T. Blackburn,et al.  Role of arginine residues in the active site of the membrane-bound lytic transglycosylase B from Pseudomonas aeruginosa. , 2006, Biochemistry.

[165]  A. Clarke,et al.  Identification and characterization of O-acetylpeptidoglycan esterase: a novel enzyme discovered in Neisseria gonorrhoeae. , 2006, Biochemistry.

[166]  C. Baron,et al.  The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. , 2005, Microbiology.

[167]  G. Koraimann,et al.  Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. , 2005, Microbiology.

[168]  S. Müller,et al.  The V-Antigen of Yersinia Forms a Distinct Structure at the Tip of Injectisome Needles , 2005, Science.

[169]  B. Dijkstra,et al.  Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. , 2005, Journal of molecular biology.

[170]  Petra L. Kohler,et al.  Characterization of the role of LtgB, a putative lytic transglycosylase in Neisseria gonorrhoeae. , 2005, Microbiology.

[171]  C. Kojima,et al.  Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR. , 2005, Biochemistry.

[172]  Noelia Valbuena,et al.  Recycling of the Anhydro-N-Acetylmuramic Acid Derived from Cell Wall Murein Involves a Two-Step Conversion to N-Acetylglucosamine-Phosphate , 2005, Journal of bacteriology.

[173]  W. Vollmer,et al.  Susceptibility to Antibiotics and β-Lactamase Induction in Murein Hydrolase Mutants of Escherichia coli , 2005, Antimicrobial Agents and Chemotherapy.

[174]  J. P. Dillard,et al.  Mutation of a Single Lytic Transglycosylase Causes Aberrant Septation and Inhibits Cell Separation of Neisseria gonorrhoeae , 2004, Journal of bacteriology.

[175]  John Bertin,et al.  Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island , 2004, Nature Immunology.

[176]  N. T. Blackburn,et al.  Inhibition of membrane‐bound lytic transglycosylase B by NAG‐thiazoline , 2004, FEBS letters.

[177]  S. Matsuyama,et al.  Sorting of lipoproteins to the outer membrane in E. coli. , 2004, Biochimica et biophysica acta.

[178]  N. T. Blackburn,et al.  The effect of NAG-thiazoline on morphology and surface hydrophobicity of Escherichia coli. , 2004, FEMS microbiology letters.

[179]  R. Rappuoli,et al.  GNA33 of Neisseria meningitidis Is a Lipoprotein Required for Cell Separation, Membrane Architecture, and Virulence , 2004, Infection and Immunity.

[180]  B. Dijkstra,et al.  Purification, crystallization and preliminary X-ray analysis of the lytic transglycosylase MltA from Escherichia coli. , 2004, Acta crystallographica. Section D, Biological crystallography.

[181]  Sergei Vakulenko,et al.  A mechanism-based inhibitor targeting the DD-transpeptidase activity of bacterial penicillin-binding proteins. , 2003, Journal of the American Chemical Society.

[182]  G. Koraimann,et al.  Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria , 2003, Cellular and Molecular Life Sciences CMLS.

[183]  W. Vollmer,et al.  Overproduction of Inactive Variants of the Murein Synthase PBP1B Causes Lysis in Escherichia coli , 2003, Journal of bacteriology.

[184]  L. Shapiro,et al.  A lytic transglycosylase homologue, PleA, is required for the assembly of pili and the flagellum at the Caulobacter crescentus cell pole , 2003, Molecular microbiology.

[185]  K. Pogliano,et al.  A cytoskeleton-like role for the bacterial cell wall during engulfment of the Bacillus subtilis forespore. , 2002, Genes & development.

[186]  H. Schwarz,et al.  Effects of Multiple Deletions of Murein Hydrolases on Viability, Septum Cleavage, and Sensitivity to Large Toxic Molecules in Escherichia coli , 2002, Journal of bacteriology.

[187]  M. Bernardini,et al.  Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm , 2002, Cellular microbiology.

[188]  S. Foster,et al.  Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. , 2002, Microbiology.

[189]  R. Rappuoli,et al.  GNA33 from Neisseria meningitidis serogroup B encodes a membrane-bound lytic transglycosylase (MltA). , 2002, European journal of biochemistry.

[190]  J. P. Dillard,et al.  A Lytic Transglycosylase of Neisseria gonorrhoeae Is Involved in Peptidoglycan-Derived Cytotoxin Production , 2002, Infection and Immunity.

[191]  D. Popham Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox , 2002, Cellular and Molecular Life Sciences CMLS.

[192]  N. T. Blackburn,et al.  Characterization of soluble and membrane-bound family 3 lytic transglycosylases from Pseudomonas aeruginosa. , 2002, Biochemistry.

[193]  S. Foster,et al.  In vivo roles of the germination-specific lytic enzymes of Bacillus subtilis 168. , 2001, Microbiology.

[194]  S. Withers,et al.  Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate , 2001, Nature.

[195]  P. Setlow,et al.  Genetic Requirements for Induction of Germination of Spores of Bacillus subtilis by Ca2+-Dipicolinate , 2001, Journal of bacteriology.

[196]  M. Lotz,et al.  Hexosaminidase inhibitors as new drug candidates for the therapy of osteoarthritis. , 2001, Chemistry & biology.

[197]  H. Duewel,et al.  Crystal structure of the lytic transglycosylase from bacteriophage lambda in complex with hexa-N-acetylchitohexaose. , 2001, Biochemistry.

[198]  A. Clarke,et al.  Differentiation of bacterial autolysins by zymogram analysis. , 2001, Analytical biochemistry.

[199]  Z. H. Li,et al.  A 1.2-A snapshot of the final step of bacterial cell wall biosynthesis. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[200]  P. Sansonetti,et al.  Structure and composition of the Shigella flexneri‘needle complex’, a part of its type III secreton , 2001, Molecular microbiology.

[201]  N. T. Blackburn,et al.  Assay for lytic transglycosylases: a family of peptidoglycan lyases. , 2000, Analytical biochemistry.

[202]  M Bycroft,et al.  The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). , 2000, Journal of molecular biology.

[203]  C. Baron,et al.  The N- and C-Terminal Portions of theAgrobacterium VirB1 Protein Independently Enhance Tumorigenesis , 2000, Journal of bacteriology.

[204]  K. H. Kalk,et al.  Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan. , 2000, Biochemistry.

[205]  J. Höltje,et al.  Interference with Murein Turnover Has No Effect on Growth but Reduces β-Lactamase Induction in Escherichia coli , 1999, Journal of bacteriology.

[206]  K. H. Kalk,et al.  Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. , 1999, Structure.

[207]  B. Dijkstra,et al.  Binding of calcium in the EF‐hand of Escherichia coli lytic transglycosylase Slt35 is important for stability , 1999, FEBS letters.

[208]  B. Dijkstra,et al.  High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment. , 1999, Journal of molecular biology.

[209]  M. Templin,et al.  A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli , 1999, The EMBO journal.

[210]  T. Beveridge,et al.  Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other gram-negative bacteria. , 1999, Microbiology.

[211]  S. Foster,et al.  The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination , 1999, Antonie van Leeuwenhoek.

[212]  A. Hattori,et al.  Expression of a Germination-Specific Amidase, SleB, of Bacilli in the Forespore Compartment of Sporulating Cells and Its Localization on the Exterior Side of the Cortex in Dormant Spores , 1999, Journal of bacteriology.

[213]  W. Vollmer,et al.  Demonstration of Molecular Interactions between the Murein Polymerase PBP1B, the Lytic Transglycosylase MltA, and the Scaffolding Protein MipA of Escherichia coli * , 1999, The Journal of Biological Chemistry.

[214]  T. Beveridge,et al.  Gram-Negative Bacteria Produce Membrane Vesicles Which Are Capable of Killing Other Bacteria , 1998, Journal of bacteriology.

[215]  Markus F. Templin,et al.  Membrane-Bound Lytic Endotransglycosylase inEscherichia coli , 1998, Journal of bacteriology.

[216]  U. Sleytr,et al.  S-Layered Aneurinibacillus andBacillus spp. Are Susceptible to the Lytic Action ofPseudomonas aeruginosa Membrane Vesicles , 1998, Journal of bacteriology.

[217]  J. Galán,et al.  Supramolecular structure of the Salmonella typhimurium type III protein secretion system. , 1998, Science.

[218]  S. Ishikawa,et al.  Regulation and Characterization of a Newly Deduced Cell Wall Hydrolase Gene (cwlJ) Which Affects Germination of Bacillus subtilis Spores , 1998, Journal of bacteriology.

[219]  J. Höltje,et al.  Growth of the Stress-Bearing and Shape-Maintaining Murein Sacculus of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[220]  J. Fastrez,et al.  Crystal structure of the lysozyme from bacteriophage lambda and its relationship with V and C-type lysozymes. , 1998, Journal of molecular biology.

[221]  T. Beveridge,et al.  Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. , 1997, The Journal of antimicrobial chemotherapy.

[222]  H. Seifert,et al.  A peptidoglycan hydrolase similar to bacteriophage endolysins acts as an autolysin in Neisseria gonorrhoeae , 1997, Molecular microbiology.

[223]  W. Vollmer,et al.  Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli , 1997, Journal of bacteriology.

[224]  G J Davies,et al.  Nomenclature for sugar-binding subsites in glycosyl hydrolases. , 1997, The Biochemical journal.

[225]  R. Moriyama,et al.  A gene (sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to L-alanine-mediated germination , 1996, Journal of bacteriology.

[226]  R. Rosenthal,et al.  Tolerance to appetite suppression induced by peptidoglycan , 1996, Infection and immunity.

[227]  T. Beveridge,et al.  Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics , 1996, Journal of bacteriology.

[228]  K. H. Kalk,et al.  Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism. , 1995, Biochemistry.

[229]  J.T. Park,et al.  Why does Escherichia coli recycle its cell wall peptides? , 1995, Molecular microbiology.

[230]  N. Isaacs,et al.  The catalytic domain of a bacterial lytic transglycosylase defines a novel class of lysozymes , 1995, Proteins.

[231]  Francis Hermann,et al.  Cloning and controlled overexpression of the gene encoding the 35 kDa soluble lytic transglycosylase from Escherichia coli , 1995, FEBS letters.

[232]  M. Templin,et al.  Cloning and expression of a murein hydrolase lipoprotein from Escherichia coli , 1995, Molecular microbiology.

[233]  S. Normark,et al.  Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta‐lactamase induction. , 1994, The EMBO journal.

[234]  T. Romeis,et al.  Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. , 1994, The Journal of biological chemistry.

[235]  A. Clarke,et al.  Initial characterization of two extracellular autolysins from Pseudomonas aeruginosa PAO1 , 1994, Journal of bacteriology.

[236]  E. Koonin,et al.  A conserved domain in putative bacterial and bacteriophage transglycosylases. , 1994, Trends in biochemical sciences.

[237]  K. H. Kalk,et al.  Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography , 1994, Nature.

[238]  J. Lancaster,et al.  Epithelial autotoxicity of nitric oxide: role in the respiratory cytopathology of pertussis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[239]  J. Höltje,et al.  Purification and properties of a membrane-bound lytic transglycosylase from Escherichia coli , 1994, Journal of bacteriology.

[240]  G. Marshall,et al.  Bordetella pertussis tracheal cytotoxin and other muramyl peptides: distinct structure-activity relationships for respiratory epithelial cytopathology. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[241]  L. Johannsen Biological properties of bacterial peptidoglycan , 1993, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[242]  J. T. Park Turnover and recycling of the murein sacculus in oligopeptide permease-negative strains of Escherichia coli: indirect evidence for an alternative permease system and for a monolayered sacculus , 1993, Journal of bacteriology.

[243]  D. H. Edwards,et al.  A murein hydrolase is the specific target of bulgecin in Escherichia coli. , 1992, The Journal of biological chemistry.

[244]  W. Keck,et al.  Murein-metabolizing enzymes from Escherichia coli: existence of a second lytic transglycosylase , 1992, Journal of Bacteriology.

[245]  C. Woldringh,et al.  Amount of peptidoglycan in cell walls of gram-negative bacteria , 1991, Journal of bacteriology.

[246]  B. Kazemier,et al.  Murein-metabolizing enzymes from Escherichia coli: sequence analysis and controlled overexpression of the slt gene, which encodes the soluble lytic transglycosylase , 1991, Journal of bacteriology.

[247]  B. Dijkstra,et al.  Crystallization of the soluble lytic transglycosylase from Escherichia coli K12. , 1990, Journal of molecular biology.

[248]  L. Ferreira,et al.  Control of the activity of the soluble lytic transglycosylase by the stringent response in Escherichia coli. , 1990, FEMS microbiology letters.

[249]  W. Keck,et al.  Molecular cloning, overexpression and mapping of the slt gene encoding the soluble lytic transglycosylase of Escherichia coli , 1989, Molecular and General Genetics MGG.

[250]  W. Goldman,et al.  Primary structure of the peptidoglycan-derived tracheal cytotoxin of Bordetella pertussis. , 1989, Biochemistry.

[251]  H. Matsuzawa,et al.  Nucleotide sequence of the rodA gene, responsible for the rod shape of Escherichia coli: rodA and the pbpA gene, encoding penicillin-binding protein 2, constitute the rodA operon , 1989, Journal of bacteriology.

[252]  B. Glauner Separation and quantification of muropeptides with high-performance liquid chromatography. , 1988, Analytical biochemistry.

[253]  U. Schwarz,et al.  The composition of the murein of Escherichia coli. , 1988, The Journal of biological chemistry.

[254]  R. Zhou,et al.  A dye release assay for determination of lysostaphin activity. , 1988, Analytical biochemistry.

[255]  W. Goldman,et al.  Major fragment of soluble peptidoglycan released from growing Bordetella pertussis is tracheal cytotoxin , 1987, Infection and immunity.

[256]  M. Kondo,et al.  Novel morphological changes in gram-negative bacteria caused by combination of bulgecin and cefmenoxime , 1986, Antimicrobial Agents and Chemotherapy.

[257]  R. S. Rosenthal,et al.  Arthropathic properties of gonococcal peptidoglycan fragments: implications for the pathogenesis of disseminated gonococcal disease , 1986, Infection and immunity.

[258]  E. Goodell Recycling of murein by Escherichia coli , 1985, Journal of bacteriology.

[259]  Uli Schwarz,et al.  Comparison of two hydrolytic murein transglycosylases of Escherichia coli. , 1985, European journal of biochemistry.

[260]  U. Schwarz,et al.  Release of cell wall peptides into culture medium by exponentially growing Escherichia coli , 1985, Journal of bacteriology.

[261]  H. Perkins,et al.  Turnover of the cell wall peptidoglycan during growth of Neisseria gonorrhoeae and Escherichia coli. Relative stability of newly synthesized material. , 1985, Journal of general microbiology.

[262]  M. de Pedro,et al.  Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture , 1985, Journal of bacteriology.

[263]  K. Biemann,et al.  Peptidoglycans as promoters of slow-wave sleep. II. Somnogenic and pyrogenic activities of some naturally occurring muramyl peptides; correlations with mass spectrometric structure determination. , 1984, The Journal of biological chemistry.

[264]  A. Imada,et al.  Bulgecin, a bacterial metabolite which in concert with beta-lactam antibiotics causes bulge formation. , 1982, The Journal of antibiotics.

[265]  M. de Pedro,et al.  Exoenzymatic activity of transglycosylase isolated from Escherichia coli. , 1981, European journal of biochemistry.

[266]  James T. Park,et al.  Effects of furazlocillin, a beta-lactam antibiotic which binds selectively to penicillin-binding protein 3, on Escherichia coli mutants deficient in other penicillin-binding proteins , 1981, Journal of bacteriology.

[267]  H. Mett,et al.  Two different species of murein transglycosylase in Escherichia coli , 1980, Journal of bacteriology.

[268]  R. Somerville,et al.  Cloning the trpR gene , 1979, Molecular and General Genetics MGG.

[269]  U. Schwarz,et al.  Novel type of murein transglycosylase in Escherichia coli , 1975, Journal of bacteriology.

[270]  J. Heijenoort,et al.  Bacterial‐Cell‐Wall Peptidoglycan Fragments Produced by Phage λ or Vi II Endolysin and Containing 1,6‐Anhydro‐N‐acetylmuramic Acid , 1975 .

[271]  L. Burman,et al.  FL-1060: a new penicillin with a unique mode of action. , 1973, Biochemical and biophysical research communications.

[272]  J. H. Hash Measurement of bacteriolytic enzymes , 1967, Journal of bacteriology.

[273]  S. A. Legotsky,et al.  Dual Active Site in the Endolytic Transglycosylase gp144 of Bacteriophage phiKZ , 2017, Acta Naturae.

[274]  F. Cava,et al.  Ultra-Sensitive, High-Resolution Liquid Chromatography Methods for the High-Throughput Quantitative Analysis of Bacterial Cell Wall Chemistry and Structure. , 2016, Methods in molecular biology.

[275]  J. Hermoso,et al.  Turnover of Bacterial Cell Wall by SltB3, a Multidomain Lytic Transglycosylase of Pseudomonas aeruginosa. , 2016, ACS chemical biology.

[276]  S. Logan,et al.  Functional analysis of SleC from Clostridium difficile: an essential lytic transglycosylase involved in spore germination. , 2014, Microbiology.

[277]  J. Hermoso,et al.  Crystallization and preliminary X-ray diffraction analysis of the lytic transglycosylase MltE from Escherichia coli. , 2011, Acta crystallographica. Section F, Structural biology and crystallization communications.

[278]  T. Wrodnigg,et al.  Imino sugars and glycosyl hydrolases: historical context, current aspects, emerging trends. , 2011, Advances in carbohydrate chemistry and biochemistry.

[279]  M. Auger,et al.  Biophysical studies of the interactions between the phage ϕKZ gp144 lytic transglycosylase and model membranes , 2009, European Biophysics Journal.

[280]  Edie M. Scheurwater,et al.  Lytic transglycosylases: bacterial space-making autolysins. , 2008, The international journal of biochemistry & cell biology.

[281]  A. Garnier,et al.  Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage phiKZ gp144 lytic transglycosylase. , 2007, FEMS microbiology letters.

[282]  B. Dijkstra,et al.  Structure of Escherichia coli lytic transglycosylase MltA with bound chitohexaose - Implications for peptidoglycan binding and cleavage , 2007 .

[283]  Doyle V. Ward Inaugural Article: Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies , 2002 .

[284]  A. Moir,et al.  Spore germination , 2002, Cellular and Molecular Life Sciences CMLS.

[285]  J. Höltje,et al.  Enzymology of elongation and constriction of the murein sacculus of Escherichia coli. , 2001, Biochimie.

[286]  N. T. Blackburn,et al.  Identification of Four Families of Peptidoglycan Lytic Transglycosylases , 2001, Journal of Molecular Evolution.

[287]  S. Foster,et al.  Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. , 2000, Microbiology.

[288]  K. H. Kalk,et al.  Accelerated X-ray structure elucidation of a 36 kDa muramidase/transglycosylase using wARP. , 1998, Acta crystallographica. Section D, Biological crystallography.

[289]  I. Wiegand,et al.  beta-Lactamase induction and cell wall recycling in gram-negative bacteria. , 1998, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[290]  I. Wiegand,et al.  β-Lactamase induction and cell wall recycling in gram-negative bacteria , 1998 .

[291]  J. Höltje,et al.  Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis. , 1996, Microbial drug resistance.

[292]  W. Keck,et al.  Identification of new members of the lytic transglycosylase family in Haemophilus influenzae and Escherichia coli. , 1996, Microbial drug resistance.

[293]  J. Höltje Molecular interplay of murein synthases and murein hydrolases in Escherichia coli. , 1996, Microbial drug resistance.

[294]  B. Matthews,et al.  The refined structures of goose lysozyme and its complex with a bound trisaccharide show that the "goose-type" lysozymes lack a catalytic aspartate residue. , 1995, Journal of molecular biology.

[295]  B. Dijkstra,et al.  'Holy' proteins. II: The soluble lytic transglycosylase. , 1994, Current opinion in structural biology.

[296]  A. Imada,et al.  Isolation and characterization of bulgecins, new bacterial metabolites with bulge-inducing activity. , 1985, The Journal of antibiotics.

[297]  U. Schwarz,et al.  Escherichia coli murein transglycosylase. Purification by affinity chromatography and interaction with polynucleotides. , 1980, European journal of biochemistry.

[298]  G. Schneider,et al.  Structural Biology and Crystallization Communications the Aeropath Project Targeting Pseudomonas Aeruginosa: Crystallographic Studies for Assessment of Potential Targets in Early-stage Drug Discovery , 2022 .