The matrix sign decomposition and its relation to the polar decomposition

[1]  Roy Mathias,et al.  Condition Estimation for Matrix Functions via the Schur Decomposition , 1995, SIAM J. Matrix Anal. Appl..

[2]  Nicholas J. Higham,et al.  A Parallel Algorithm for Computing the Polar Decomposition , 1994, Parallel Comput..

[3]  R. Bhatia Matrix factorizations and their perturbations , 1994 .

[4]  Alan J. Laub,et al.  A Newton-squaring algorithm for computing the negative invariant subspace of a matrix , 1993, IEEE Trans. Autom. Control..

[5]  R. Mathias Perturbation Bounds for the Polar Decomposition , 1997 .

[6]  Nicholas J. Higham,et al.  Perturbation theory and backward error forAX−XB=C , 1993 .

[7]  Nicholas J. Higham,et al.  Perturbation Theory And Backward Error For , 1993 .

[8]  James Demmel,et al.  Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.

[9]  A. Laub,et al.  Matrix-sign algorithms for Riccati equations , 1992 .

[10]  A. Laub,et al.  Parallel algorithms for algebraic Riccati equations , 1991 .

[11]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[12]  Charles Kenney,et al.  Polar Decomposition and Matrix Sign Function Condition Estimates , 1991, SIAM J. Sci. Comput..

[13]  A. Laub,et al.  Rational iterative methods for the matrix sign function , 1991 .

[14]  Alan J. Laub,et al.  On Scaling Newton's Method for Polar Decomposition and the Matrix Sign Function , 1990, 1990 American Control Conference.

[15]  Nicholas J. Higham,et al.  Fast Polar Decomposition of an Arbitrary Matrix , 1990, SIAM J. Sci. Comput..

[16]  Nicholas J. Higham,et al.  Experience with a Matrix Norm Estimator , 1990, SIAM J. Sci. Comput..

[17]  Alan J. Laub,et al.  A Parallel Algorithm for the Matrix Sign Function , 1990, Int. J. High Speed Comput..

[18]  Anders Barrlund,et al.  Perturbation bounds on the polar decomposition , 1990 .

[19]  Paul Van Dooren,et al.  A systolic algorithm for riccati and lyapunov equations , 1989, Math. Control. Signals Syst..

[20]  A. Laub,et al.  Condition Estimates for Matrix Functions , 1989 .

[21]  A. J. Laub,et al.  Solving the algebraic Riccati equation on a hypercube multiprocessor , 1989, C3P.

[22]  N. Higham MATRIX NEARNESS PROBLEMS AND APPLICATIONS , 1989 .

[23]  Nicholas J. Higham,et al.  FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.

[24]  N. Higham COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX , 1988 .

[25]  N. Higham Computing real square roots of a real matrix , 1987 .

[26]  R. Byers Solving the algebraic Riccati equation with the matrix sign function , 1987 .

[27]  N. Higham Computing the polar decomposition with applications , 1986 .

[28]  J. L. Howland The sign matrix and the separation of matrix eigenvalues , 1983 .

[29]  H. Araki,et al.  An inequality for Hilbert-Schmidt norm , 1981 .

[30]  F. Uhlig Explicit polar decomposition and a near-characteristic polynomial: The 2×2 case , 1981 .

[31]  Eugene D. Denman,et al.  Roots of real matrices , 1981 .

[32]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[33]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[34]  E. Denman,et al.  The matrix sign function and computations in systems , 1976 .

[35]  C. R. DePrima,et al.  The range of A−1A∗ in GL(n,C) , 1974 .

[36]  E. Denman,et al.  A computational method for eigenvalues and eigenvectors of a matrix with real eigenvalues , 1973 .

[37]  Å. Björck,et al.  An Iterative Algorithm for Computing the Best Estimate of an Orthogonal Matrix , 1971 .

[38]  K. Abromeit Music Received , 2023, Notes.

[39]  Tosio Kato Perturbation theory for linear operators , 1966 .

[40]  A. Hoffman,et al.  Some metric inequalities in the space of matrices , 1955 .

[41]  L. Autonne Sur les groupes linéaires, réels et orthogonaux , 1902 .