The matrix sign decomposition and its relation to the polar decomposition
暂无分享,去创建一个
[1] Roy Mathias,et al. Condition Estimation for Matrix Functions via the Schur Decomposition , 1995, SIAM J. Matrix Anal. Appl..
[2] Nicholas J. Higham,et al. A Parallel Algorithm for Computing the Polar Decomposition , 1994, Parallel Comput..
[3] R. Bhatia. Matrix factorizations and their perturbations , 1994 .
[4] Alan J. Laub,et al. A Newton-squaring algorithm for computing the negative invariant subspace of a matrix , 1993, IEEE Trans. Autom. Control..
[5] R. Mathias. Perturbation Bounds for the Polar Decomposition , 1997 .
[6] Nicholas J. Higham,et al. Perturbation theory and backward error forAX−XB=C , 1993 .
[7] Nicholas J. Higham,et al. Perturbation Theory And Backward Error For , 1993 .
[8] James Demmel,et al. Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.
[9] A. Laub,et al. Matrix-sign algorithms for Riccati equations , 1992 .
[10] A. Laub,et al. Parallel algorithms for algebraic Riccati equations , 1991 .
[11] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[12] Charles Kenney,et al. Polar Decomposition and Matrix Sign Function Condition Estimates , 1991, SIAM J. Sci. Comput..
[13] A. Laub,et al. Rational iterative methods for the matrix sign function , 1991 .
[14] Alan J. Laub,et al. On Scaling Newton's Method for Polar Decomposition and the Matrix Sign Function , 1990, 1990 American Control Conference.
[15] Nicholas J. Higham,et al. Fast Polar Decomposition of an Arbitrary Matrix , 1990, SIAM J. Sci. Comput..
[16] Nicholas J. Higham,et al. Experience with a Matrix Norm Estimator , 1990, SIAM J. Sci. Comput..
[17] Alan J. Laub,et al. A Parallel Algorithm for the Matrix Sign Function , 1990, Int. J. High Speed Comput..
[18] Anders Barrlund,et al. Perturbation bounds on the polar decomposition , 1990 .
[19] Paul Van Dooren,et al. A systolic algorithm for riccati and lyapunov equations , 1989, Math. Control. Signals Syst..
[20] A. Laub,et al. Condition Estimates for Matrix Functions , 1989 .
[21] A. J. Laub,et al. Solving the algebraic Riccati equation on a hypercube multiprocessor , 1989, C3P.
[22] N. Higham. MATRIX NEARNESS PROBLEMS AND APPLICATIONS , 1989 .
[23] Nicholas J. Higham,et al. FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.
[24] N. Higham. COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX , 1988 .
[25] N. Higham. Computing real square roots of a real matrix , 1987 .
[26] R. Byers. Solving the algebraic Riccati equation with the matrix sign function , 1987 .
[27] N. Higham. Computing the polar decomposition with applications , 1986 .
[28] J. L. Howland. The sign matrix and the separation of matrix eigenvalues , 1983 .
[29] H. Araki,et al. An inequality for Hilbert-Schmidt norm , 1981 .
[30] F. Uhlig. Explicit polar decomposition and a near-characteristic polynomial: The 2×2 case , 1981 .
[31] Eugene D. Denman,et al. Roots of real matrices , 1981 .
[32] J. D. Roberts,et al. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .
[33] F. Beaufils,et al. FRANCE , 1979, The Lancet.
[34] E. Denman,et al. The matrix sign function and computations in systems , 1976 .
[35] C. R. DePrima,et al. The range of A−1A∗ in GL(n,C) , 1974 .
[36] E. Denman,et al. A computational method for eigenvalues and eigenvectors of a matrix with real eigenvalues , 1973 .
[37] Å. Björck,et al. An Iterative Algorithm for Computing the Best Estimate of an Orthogonal Matrix , 1971 .
[38] K. Abromeit. Music Received , 2023, Notes.
[39] Tosio Kato. Perturbation theory for linear operators , 1966 .
[40] A. Hoffman,et al. Some metric inequalities in the space of matrices , 1955 .
[41] L. Autonne. Sur les groupes linéaires, réels et orthogonaux , 1902 .