Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images

[1]  Ezequiel Echer,et al.  Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006) , 2008 .

[2]  P. Cargill,et al.  Modelling interplanetary CMEs using magnetohydrodynamic simulations , 2002 .

[3]  D. Odstrcil,et al.  INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS , 2011, 1110.0827.

[4]  J. Davies,et al.  The Heliospheric Imagers Onboard the STEREO Mission , 2009 .

[5]  T. Howard,et al.  On the Evolution of Coronal Mass Ejections in the Interplanetary Medium , 2007 .

[6]  N. Lugaz,et al.  Determining CME parameters by fitting heliospheric observations: Numerical investigation of the accuracy of the methods , 2011 .

[7]  J. Strapp,et al.  Evaluation of modeled cloud properties against aircraft observations for air quality applications , 2007 .

[8]  J. Davies,et al.  Deriving solar transient characteristics from single spacecraft STEREO/HI elongation variations: a theoretical assessment of the technique , 2009 .

[9]  R. Howard,et al.  Continuous tracking of coronal outflows : Two kinds of coronal mass ejections , 1999 .

[10]  Timothy A. Howard,et al.  Application of a new phenomenological coronal mass ejection model to space weather forecasting , 2010 .

[11]  D. Odstrcil,et al.  Study of CME Propagation in the Inner Heliosphere: SOHO LASCO, SMEI and STEREO HI Observations of the January 2007 Events , 2009 .

[12]  N. Gopalswamy,et al.  On the Rates of Coronal Mass Ejections: Remote Solar and In Situ Observations , 2006 .

[13]  Peter J. Cargill,et al.  On the Aerodynamic Drag Force Acting on Interplanetary Coronal Mass Ejections , 2004 .

[14]  R. Howard,et al.  AN EMPIRICAL RECONSTRUCTION OF THE 2008 APRIL 26 CORONAL MASS EJECTION , 2009 .

[15]  David R. Chesney,et al.  Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.

[16]  J. Davies,et al.  A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO , 2009 .

[17]  C. Möstl,et al.  The role of aerodynamic drag in propagation of interplanetary coronal mass ejections , 2010 .

[18]  Nat Gopalswamy,et al.  An empirical model to predict the 1-AU arrival of interplanetary shocks , 2002 .

[19]  B. Gui,et al.  Quantitative Analysis of CME Deflections in the Corona , 2011, 1105.3382.

[20]  A. Vourlidas,et al.  DETERMINING THE AZIMUTHAL PROPERTIES OF CORONAL MASS EJECTIONS FROM MULTI-SPACECRAFT REMOTE-SENSING OBSERVATIONS WITH STEREO SECCHI , 2010, 1004.0945.

[21]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[22]  N. Gopalswamy,et al.  Geoeffectiveness of halo coronal mass ejections , 2007 .

[23]  J. Luhmann,et al.  STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period , 2009 .

[24]  N. Lugaz,et al.  Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere - application to CME-CME interaction , 2009, 0909.0534.

[25]  N. Gopalswamy,et al.  Predicting the 1‐AU arrival times of coronal mass ejections , 2001 .

[26]  Christopher J. Davis,et al.  A comparison of space weather analysis techniques used to predict the arrival of the Earth‐directed CME and its shockwave launched on 8 April 2010 , 2011 .

[27]  A. B. Galvin,et al.  ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO STEREO OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION , 2011, The Astrophysical Journal.

[28]  Jie Zhang,et al.  Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005 , 2007 .

[29]  J. F. Mckenzie,et al.  Differential ion streaming in the solar wind as an equilibrium state , 2005 .

[30]  B. Vršnak Forces governing coronal mass ejections , 2006 .

[31]  A. Vourlidas,et al.  Fast coronal mass ejection environments and the production of solar energetic particle events , 2005 .

[32]  N. Lugaz,et al.  Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations , 2010, 1010.1949.

[33]  T. Howard,et al.  Interplanetary Coronal Mass Ejections Observed in the Heliosphere: 1. Review of Theory , 2009 .

[34]  M. Lockwood,et al.  A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft , 2009 .

[35]  P. Gallagher,et al.  SOLAR WIND DRAG AND THE KINEMATICS OF INTERPLANETARY CORONAL MASS EJECTIONS , 2010, 1010.0192.

[36]  P. Gallagher,et al.  Propagation of an Earth-directed coronal mass ejection in three dimensions. , 2010, Nature communications.

[37]  M. Lockwood,et al.  First imaging of corotating interaction regions using the STEREO spacecraft , 2008 .

[38]  Bojan Vršnak,et al.  Influence of the aerodynamic drag on the motion of interplanetary ejecta , 2002 .

[39]  Y. Liu,et al.  RECONSTRUCTING CORONAL MASS EJECTIONS WITH COORDINATED IMAGING AND IN SITU OBSERVATIONS: GLOBAL STRUCTURE, KINEMATICS, AND IMPLICATIONS FOR SPACE WEATHER FORECASTING , 2010, 1009.1414.

[40]  James Chen Theory of prominence eruption and propagation: Interplanetary consequences , 1996 .

[41]  Hilary V. Cane,et al.  Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties , 2010 .

[42]  M. Temmer,et al.  Constraining the Kinematics of Coronal Mass Ejections in the Inner Heliosphere with In-Situ Signatures , 2011, 1110.0300.

[43]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2008 .

[44]  S. Tappin The Deceleration of an Interplanetary Transient from the Sun to 5 Au , 2006 .