In accordance with improvement of FPD technology, masks such as phase shift mask (PSM) and multi-tone mask (MTM) for a particular purpose also have been developed. Above all, the MTM consisted of more than tri-tone transmittance has a substantial advantage which enables to reduce the number of mask demand in FPD fabrication process contrast to normal mask of two-tone transmittance.[1,2] A chromium (Cr)-based MTM (Typically top type) is being widely employed because of convenience of etch process caused by its only Cr-based structure consisted of Cr absorber layer and Cr half-tone layer. However, the top type of Cr-based MTM demands two Cr sputtering processes after each layer etching process and writing process. For this reason, a different material from the Cr-based MTM is required for reduction of mask fabrication time and cost. In this study, we evaluate a MTM which has a structure combined Cr with molybdenum silicide (MoSi) to resolve the issues mentioned above. The MoSi which is demonstrated by integrated circuit (IC) process is a suitable material for MTM evaluation. This structure could realize multi-transmittance in common with the Cr-based MTM. Moreover, it enables to reduce the number of sputtering process. We investigate a optimized structure upon consideration of productivity along with performance such as critical dimension (CD) variation and transmittance range of each structure. The transmittance is targeted at h-line wavelength (405 nm) in the evaluation. Compared with Cr-based MTM, the performances of all Cr-/MoSi-based MTMs are considered.