The Trapping Redundancy of Linear Block Codes

We generalize the notion of the stopping redundancy in order to study the smallest size of a trapping set in Tanner graphs of linear block codes. In this context, we introduce the notion of the trapping redundancy of a code, which quantifies the relationship between the number of redundant rows in any parity-check matrix of a given code and the size of its smallest trapping set. Trapping sets with certain parameter sizes are known to cause error-floors in the performance curves of iterative belief propagation (BP) decoders, and it is therefore important to identify decoding matrices that avoid such sets. Bounds on the trapping redundancy are obtained using probabilistic and constructive methods, and the analysis covers both general and elementary trapping sets. Numerical values for these bounds are computed for the [2640, 1320] Margulis code and the class of projective geometry codes, and compared with some new code-specific trapping set size estimates.

[1]  J. Hirschfeld Finite projective spaces of three dimensions , 1986 .

[2]  P. Vontobel,et al.  Graph-Cover Decoding and Finite-Length Analysis of Message-Passing Iterative Decoding of LDPC Codes , 2005, ArXiv.

[3]  R. Cooke Experts in Uncertainty: Opinion and Subjective Probability in Science , 1991 .

[4]  O. Milenkovic,et al.  Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[5]  Bane V. Vasic,et al.  Diagnosis of weaknesses in modern error correction codes: a physics approach , 2005, Physical review letters.

[6]  Wen-Ching Winnie Li,et al.  Characterizations of Pseudo-Codewords of LDPC Codes , 2005, ArXiv.

[7]  O. Milenkovic,et al.  Stopping and Trapping Sets in Generalized Covering Arrays , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[8]  Henk D. L. Hollmann,et al.  On Parity-Check Collections for Iterative Erasure Decoding That Correct all Correctable Erasure Patterns of a Given Size , 2007, IEEE Transactions on Information Theory.

[9]  Jing Li,et al.  On Accuracy of Gaussian Assumption in Iterative Analysis for LDPC Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[10]  Philippe Flajolet,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[11]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[12]  P. J. Brockwell An asymptotic expansion for the tail of a binomial distribution and its application in queueing theory , 1964 .

[13]  Michael Chertkov,et al.  Improving convergence of Belief Propagation decoding , 2006, ArXiv.

[14]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[15]  Paul H. Siegel,et al.  Improved Upper Bounds on Stopping Redundancy , 2005, IEEE Transactions on Information Theory.

[16]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[17]  Frank R. Kschischang,et al.  A general computation rule for lossy summaries/messages with examples from equalization , 2006, ArXiv.

[18]  Keith M. Chugg,et al.  Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[19]  P. Vontobel,et al.  Characterizations of pseudo-codewords of (low-density) parity-check codes , 2007 .

[20]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[21]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[22]  Johannes B. Huber,et al.  CTH02-4: When Does One Redundant Parity-Check Equation Matter? , 2006, IEEE Globecom 2006.

[23]  Jinghu Chen,et al.  Density evolution for two improved BP-Based decoding algorithms of LDPC codes , 2002, IEEE Communications Letters.

[24]  P. Vontobel,et al.  Constructions of regular and irregular LDPC codes using Ramanujan graphs and ideas from Margulis , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[25]  J. Huber,et al.  The stopping redundancy hierarchy of cyclic codes , 2006 .

[26]  Lih-Yuan Deng,et al.  Orthogonal Arrays: Theory and Applications , 1999, Technometrics.

[27]  Evangelos Eleftheriou,et al.  On the computation of the minimum distance of low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[28]  Shashi Kiran Chilappagari,et al.  Failures of the Gallager B Decoder: Analysis and Applications , 2006 .

[29]  Olgica Milenkovic,et al.  LDPC Codes Based on Latin Squares: Cycle Structure, Stopping Set, and Trapping Set Analysis , 2007, IEEE Transactions on Communications.

[30]  M. Pretti A message-passing algorithm with damping , 2005 .

[31]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[32]  Alexander Vardy,et al.  On the stopping distance and the stopping redundancy of codes , 2006, IEEE Transactions on Information Theory.

[33]  Emina Soljanin,et al.  Asymptotic Spectra of Trapping Sets in Regular and Irregular LDPC Code Ensembles , 2007, IEEE Transactions on Information Theory.

[34]  G. A. Margulis,et al.  Explicit constructions of graphs without short cycles and low density codes , 1982, Comb..

[35]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[36]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[37]  Sartaj Sahni,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[38]  Johannes B. Huber,et al.  Permutation Decoding and the Stopping Redundancy Hierarchy of Cyclic and Extended Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[39]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[40]  Andrew McGregor,et al.  On the Hardness of Approximating Stopping and Trapping Sets in LDPC Codes , 2007, 2007 IEEE Information Theory Workshop.

[41]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[42]  Jon Feldman,et al.  Decoding error-correcting codes via linear programming , 2003 .

[43]  Amir H. Banihashemi,et al.  Improving belief propagation on graphs with cycles , 2004, IEEE Communications Letters.

[44]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[45]  Robert L. Winkler,et al.  Combining Probability Distributions From Experts in Risk Analysis , 1999 .

[46]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[47]  M. Opper,et al.  Advanced mean field methods: theory and practice , 2001 .

[48]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[49]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[50]  Navin Kashyap,et al.  Shortened Array Codes of Large Girth , 2005, IEEE Transactions on Information Theory.

[51]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .