Quantization condition for bound and quasibound states

We discuss a quantization condition for bound and quasibound states of separable quantum-mechanical systems. Results for simple non-trivial models suggest that the quantization condition gives the poles of the scattering matrix except for those coming from virtual states.

[1]  P. B. Kahn,et al.  Problems in Quantum Mechanics , 1960 .

[2]  Fernández,et al.  Riccati-Padé quantization and oscillators V(r)=gr alpha. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[3]  Spectra of atomic Hamiltonians in DC fields: use of the numerical range to investigate the effect of a dilatation transformation , 1978 .

[4]  Francisco M. Fernández,et al.  Accurate eigenvalues and eigenfunctions for quantum-mechanical anharmonic oscillators , 1993 .

[5]  O. Atabek,et al.  Complex eigenenergy spectrum of the Schrodinger equation using Lanczos' tau method , 1993 .

[6]  R. Friedman,et al.  Chemical reaction thresholds are resonances , 1991 .

[7]  Shang‐keng Ma Redundant Zeros in the Discrete Energy Spectra in Heisenberg's Theory of Characteristic Matrix , 1946 .

[8]  N. Moiseyev,et al.  Resonance properties of complex-rotated hamiltonians , 1978 .

[9]  Erkki J. Brändas,et al.  Weyl's theory and the method of complex rotation , 1982 .

[10]  Tipping,et al.  Eigenvalues of the Schrödinger equation via the Riccati-Padé method. , 1989, Physical review. A, General physics.

[11]  A. Martin On the analytic properties of partial wave scattering amplitudes obtained from the Schrödinger equation , 1959 .

[12]  J. Connor,et al.  Wronskian analysis of resonance tunnelling reactions , 1973 .

[13]  A. Requena,et al.  The wavefunction of the complex coordinate method , 1980 .

[14]  I. V. Falomkin,et al.  $\overline{p}^{4}$He break-up cross section at 180 MeV , 1987 .

[15]  Francisco M. Fernández,et al.  Resonances for a perturbed Coulomb potential , 1995 .

[16]  Tipping,et al.  Tight upper and lower bounds for energy eigenvalues of the Schrödinger equation. , 1989, Physical review. A, General physics.

[17]  R. Ray,et al.  On the mechanism of time-dependent spectral diffusion in binary solid solutions: The 1,4-dibromonaphthalene and 1-bromo-4-chloronaphthalene system , 1990 .

[18]  F. Fernández,et al.  Direct calculation of accurate Siegert eigenvalues , 1995 .