Guided Volume Editing based on Histogram Dissimilarity

Segmentation of volumetric data is an important part of many analysis pipelines, but frequently requires manual inspection and correction. While plenty of volume editing techniques exist, it remains cumbersome and errorprone for the user to find and select appropriate regions for editing. We propose an approach to improve volume editing by detecting potential segmentation defects while considering the underlying structure of the object of interest. Our method is based on a novel histogram dissimilarity measure between individual regions, derived from structural information extracted from the initial segmentation. Based on this information, our interactive system guides the user towards potential defects, provides integrated tools for their inspection, and automatically generates suggestions for their resolution. We demonstrate that our approach can reduce interaction effort and supports the user in a comprehensive investigation for high‐quality segmentations.

[1]  Horst Bischof,et al.  Liver Segmentation in CT Data: A Segmentation Refinement Approach , 2007 .

[2]  Martin Styner,et al.  Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets , 2009, IEEE Transactions on Medical Imaging.

[3]  Stefan Bruckner,et al.  Vessel Visualization using Curvicircular Feature Aggregation , 2013, Comput. Graph. Forum.

[4]  Stefan Bruckner,et al.  Volume visualization based on statistical transfer-function spaces , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[5]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[6]  Gareth Funka-Lea,et al.  An Energy Minimization Approach to the Data Driven Editing of Presegmented Images/Volumes , 2006, MICCAI.

[7]  J. B. Brooke,et al.  SUS: A 'Quick and Dirty' Usability Scale , 1996 .

[8]  Hans-Peter Seidel,et al.  Segmentation of DT-MRI Anisotropy Isosurfaces , 2007, EuroVis.

[9]  Stefan Braunewell,et al.  A Concept for the Application of a Hierarchical Image Subdivision to the Segmentation Editing Problem , 2014 .

[10]  Rangasami L. Kashyap,et al.  Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms , 1994, CVGIP Graph. Model. Image Process..

[11]  Jacques A. de Guise,et al.  A method for modeling noise in medical images , 2004, IEEE Transactions on Medical Imaging.

[12]  Kenneth M. Hanson,et al.  Noise and Contrast Discrimination in Computed Tomography , 1981 .

[13]  Hans Meine,et al.  On the evaluation of segmentation editing tools , 2014, Journal of medical imaging.

[14]  Robert Pless,et al.  Interactive Separation of Segmented Bones in CT Volumes Using Graph Cut , 2008, MICCAI.

[15]  Timo Ropinski,et al.  Multimodal Visualization with Interactive Closeups , 2009 .

[16]  D. Reniers Skeletonization and Segmentation of Binary Voxel Shapes , 2009 .

[17]  Peter Mindek,et al.  ViviSection: Skeleton‐based Volume Editing , 2013, Comput. Graph. Forum.

[18]  Ghassan Hamarneh,et al.  Spotlight: Automated Confidence-Based User Guidance for Increasing Efficiency in Interactive 3D Image Segmentation , 2010, MCV.

[19]  Uncertainty-Aware Guided Volume Segmentation , 2010, IEEE Transactions on Visualization and Computer Graphics.

[20]  William A. Barrett,et al.  Intelligent scissors for image composition , 1995, SIGGRAPH.

[21]  Johanna Beyer,et al.  Design and Evaluation of Interactive Proofreading Tools for Connectomics , 2014, IEEE Transactions on Visualization and Computer Graphics.

[22]  William A. Barrett,et al.  Interactive segmentation of image volumes with Live Surface , 2007, Comput. Graph..

[23]  Jan Hendrik Moltz,et al.  Sketch‐Based Editing Tools for Tumour Segmentation in 3D Medical Images , 2013, Comput. Graph. Forum.

[24]  Bernhard Preim,et al.  Interaktionstechniken zur Korrektur medizinischer 3D-Segmentierungen , 2010, Bildverarbeitung für die Medizin.

[25]  Amelio Vázquez Reina,et al.  Large-Scale Automatic Reconstruction of Neuronal Processes from Electron Microscopy Images , 2013, Medical Image Anal..

[26]  Hans Hagen,et al.  User-guided {Segmentation} of {Thoracic} {Computed} {Tomography} {Data} for {Electrical} {Impedance} {Tomography} {Image} {Reconstruction} , 2012 .

[27]  Heinz-Otto Peitgen,et al.  IWT-interactive watershed transform: a hierarchical method for efficient interactive and automated segmentation of multidimensional gray-scale images , 2003, SPIE Medical Imaging.

[28]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[29]  Marie-Pierre Jolly,et al.  A splice-guided data driven interactive editing , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[30]  M. Sramek,et al.  SEGMENTATION OF TOMOGRAPHIC DATA BY HIERARCHICAL WATERSHED TRANSFORM , 2002 .