Catalytic Amination of β-(Hetero)arylethyl Ethers by Phosphazene Base t-Bu-P4.

We describe the catalytic amination of β-(hetero)arylethyl ethers with amines using the organic superbase t-Bu-P4 to obtain β-(hetero)arylethylamines. The reaction has a broad substrate scope and allows the transformations of electron-deficient and electron-neutral β-(hetero)arylethyl ethers with various amines including pyrrole, N-alkylaniline, diphenylamine, aniline, indole, and indoline derivatives. Mechanistic studies indicate a two-reaction pathway of MeOH elimination from the substrate to form a (hetero)arylalkene followed by the hydroamination of the alkene.

[1]  Kazutoshi Hayashi,et al.  Organic Superbase t-Bu-P4 Catalyzes Amination of Methoxy(hetero)arenes. , 2019, Organic letters.

[2]  Kazutoshi Hayashi,et al.  Phosphazene Base tBu-P4 Catalyzed Methoxy-Alkoxy Exchange Reaction on (Hetero)Arenes. , 2019, Chemistry.

[3]  M. Terada,et al.  Organocatalytic Nucleophilic Substitution Reaction of gem-Difluoroalkenes with Ketene Silyl Acetals. , 2019, Organic letters.

[4]  J. Bandar,et al.  Catalytic α-Selective Deuteration of Styrene Derivatives. , 2019, Journal of the American Chemical Society.

[5]  J. Bandar,et al.  Synthesis of β-Phenethyl Ethers by Base-Catalyzed Alcohol Addition Reactions to Aryl Alkenes , 2018, Synlett.

[6]  J. Bandar,et al.  Superbase-Catalyzed anti-Markovnikov Alcohol Addition Reactions to Aryl Alkenes. , 2018, Journal of the American Chemical Society.

[7]  Subhajit Bhunia,et al.  Selected Copper-Based Reactions for C-N, C-O, C-S, and C-C Bond Formation. , 2017, Angewandte Chemie.

[8]  E. Schulz,et al.  Lithium‐Catalyzed anti‐Markovnikov Intermolecular Hydroamination Reactions of Vinylarenes and Simple Secondary Amines , 2017 .

[9]  Damien Jardel,et al.  Protonated Phosphazenes: Structures and Hydrogen-Bonding Organocatalysts for Carbonyl Bond Activation , 2016 .

[10]  A. Shafiee,et al.  Aza-Michael-type addition reaction catalysed by a supported ionic liquid phase incorporating an anionic heteropoly acid , 2016 .

[11]  Etsuko Tokunaga,et al.  Organocatalyzed Trifluoromethylation of Ketones and Sulfonyl Fluorides by Fluoroform under a Superbase System , 2015, ChemistryOpen.

[12]  S. Bull,et al.  Lewis acid activation of pyridines for nucleophilic aromatic substitution and conjugate addition. , 2015, ChemSusChem.

[13]  K. Goossen,et al.  Late transition metal-catalyzed hydroamination and hydroamidation. , 2015, Chemical reviews.

[14]  E. Schulz,et al.  Anti‐Markovnikov Hydroamination of Aromatic Alkenes with Secondary Amines Catalyzed by Easily Accessible Yttrium Complexes , 2014 .

[15]  V. Reutrakul,et al.  Nucleophilic gem‐Difluoro(phenylsulfanyl)methylation of Carbonyl Compounds with PhSCF2H in the Presence of a Phosphazene as a Base , 2014 .

[16]  David A. Nicewicz,et al.  anti-Markovnikov hydroamination of alkenes catalyzed by a two-component organic photoredox system: direct access to phenethylamine derivatives. , 2014, Angewandte Chemie.

[17]  Lei Wang,et al.  Fe-promoted cross coupling of homobenzylic methyl ethers with Grignard reagents via sp3 C-O bond cleavage. , 2013, Chemical communications.

[18]  F. Terrier Modern Nucleophilic Aromatic Substitution: Terrier/Modern Nucleophilic Aromatic Substitution , 2013 .

[19]  David A. Nicewicz,et al.  Anti-Markovnikov hydroamination of alkenes catalyzed by an organic photoredox system. , 2013, Journal of the American Chemical Society.

[20]  Thierry Roisnel,et al.  When bigger is better: intermolecular hydrofunctionalizations of activated alkenes catalyzed by heteroleptic alkaline Earth complexes. , 2012, Angewandte Chemie.

[21]  A. Barrett,et al.  Heavier alkaline earth catalysts for the intermolecular hydroamination of vinylarenes, dienes, and alkynes. , 2012, Journal of the American Chemical Society.

[22]  T. Emge,et al.  A chiral phenoxyamine magnesium catalyst for the enantioselective hydroamination/cyclization of aminoalkenes and intermolecular hydroamination of vinyl arenes. , 2012, Angewandte Chemie.

[23]  F. Kakiuchi,et al.  Ruthenium-catalyzed conversion of sp3 C-O bonds in ethers to C-C bonds using triarylboroxines. , 2011, Organic letters.

[24]  J. Barlow,et al.  Synthesis of novel mast cell-stabilising and anti-allergic 1,2,3,4-tetrahydro-1-naphthalenols and related compounds. , 2011, European journal of medicinal chemistry.

[25]  Y. Kondo,et al.  Metal-free deprotonative functionalization of heteroaromatics using organic superbase catalyst. , 2010, Chemical communications.

[26]  A. Barrett,et al.  Heavier group 2 metals and intermolecular hydroamination: a computational and synthetic assessment. , 2009, Journal of the American Chemical Society.

[27]  T. Müller,et al.  Hydroamination: direct addition of amines to alkenes and alkynes. , 2008, Chemical reviews.

[28]  Y. Kondo,et al.  Catalytic Deprotonative Functionalization of Propargyl Silyl Ethers with Imines , 2008 .

[29]  B. Bhanage,et al.  Cation exchange resin catalyzed hydroamination of vinylpyridines with aliphatic/aromatic amines , 2008 .

[30]  V. Branchadell,et al.  Base-catalyzed anti-markovnikov hydroamination of vinylarenes : Scope, limitations and computational studies , 2007 .

[31]  M. Hashimoto,et al.  Nucleophilic aromatic substitution using Et3SiH/cat. t-Bu-P4 as a system for nucleophile activation. , 2007, Chemical communications.

[32]  Z. Rappoport The Chemistry of Anilines , 2007 .

[33]  F. Hampel,et al.  3,3'-Bis(trisarylsilyl)-substituted binaphtholate rare earth metal catalysts for asymmetric hydroamination. , 2006, Journal of the American Chemical Society.

[34]  K. Peters,et al.  Extremely Strong, Uncharged Auxiliary Bases; Monomeric and Polymer‐Supported Polyaminophosphazenes (P2–P5) , 2006 .

[35]  Y. Kondo,et al.  Functionalization of Alkynes Catalyzed by t-Bu-P4 Base , 2004 .

[36]  D. Michalik,et al.  Biologically active compounds through catalysis: efficient synthesis of N-(heteroarylcarbonyl)-N'-(arylalkyl)piperazines. , 2004, Chemistry.

[37]  J. Hartwig,et al.  Ruthenium-catalyzed anti-Markovnikov hydroamination of vinylarenes. , 2003, Journal of the American Chemical Society.

[38]  T. Marks,et al.  Organolathanide-catalyzed regioselective intermolecular hydroamination of alkenes, alkynes, vinylarenes, di- and trivinylarenes, and methylenecyclopropanes. Scope and mechanistic comparison to intramolecular cyclohydroaminations. , 2003, Journal of the American Chemical Society.

[39]  Y. Kondo,et al.  A new strategy for deprotonative functionalization of aromatics: transformations with excellent chemoselectivity and unique regioselectivities using t-Bu-P4 base. , 2003, Journal of the American Chemical Society.

[40]  J. Hartwig,et al.  Rhodium-catalyzed anti-Markovnikov hydroamination of vinylarenes. , 2003, Journal of the American Chemical Society.

[41]  M. Beller,et al.  Metal-Initiated Amination of Alkenes and Alkynes. , 1998, Chemical reviews.

[42]  D. Lednicer,et al.  Strategies for organic drug synthesis and design , 1998 .

[43]  P. Venturello,et al.  Reaction of α,β-unsaturated and α-phenyl acetals with epoxides, promoted by lithium. Potassium mixed base LICKOR: Synthesis of homoallyl alcohols , 1996 .

[44]  H. Hamana,et al.  Lithium Alkylamide-Catalyzed Addition Reaction of Alkylamines to Vinyl Monomers. III. Addition Reaction of p-Substituted Benzylamines to Styrene and Divinylbenzenes , 1992 .

[45]  R. Schwesinger,et al.  Peralkylated Polyaminophosphazenes— Extremely Strong, Neutral Nitrogen Bases , 1987 .