Computing Connected Proof(-Structure)s From Their Taylor Expansion
暂无分享,去创建一个
Giulio Guerrieri | Luc Pellissier | Lorenzo Tortora de Falco | L. Falco | L. Pellissier | Giulio Guerrieri
[1] Roma TreVia Ostiense,et al. Obsessional experiments for Linear Logic Proof-nets , 2001 .
[2] Michele Pagani,et al. A semantic measure of the execution time in linear logic , 2011, Theor. Comput. Sci..
[3] Paolo Tranquilli,et al. Intuitionistic differential nets and lambda-calculus , 2011, Theor. Comput. Sci..
[4] Damiano Mazza,et al. The Separation Theorem for Differential Interaction Nets , 2007, LPAR.
[5] H. Friedman. Equality between functionals , 1975 .
[6] Thomas Ehrhard,et al. Finiteness spaces , 2005, Mathematical Structures in Computer Science.
[7] Michele Pagani,et al. The Inverse Taylor Expansion Problem in Linear Logic , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.
[8] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[9] Lorenzo Tortora de Falco,et al. The relational model is injective for multiplicative exponential linear logic (without weakenings) , 2010, Ann. Pure Appl. Log..
[10] Thomas Ehrhard,et al. Uniformity and the Taylor expansion of ordinary lambda-terms , 2008, Theor. Comput. Sci..
[11] Vincent Danos,et al. The structure of multiplicatives , 1989, Arch. Math. Log..
[12] Vincent Danos,et al. Proof-nets and the Hilbert space , 1995 .
[13] Y. Lafont. From proof-nets to interaction nets , 1995 .
[14] Michele Pagani,et al. The Cut-Elimination Theorem for Differential Nets with Promotion , 2009, TLCA.
[15] Antonio Bucciarelli,et al. On phase semantics and denotational semantics: the exponentials , 2001, Ann. Pure Appl. Log..
[16] Richard Statman,et al. Completeness, invariance and λ-definability , 1982, Journal of Symbolic Logic.
[17] Daniel de Carvalho. The Relational Model Is Injective for Multiplicative Exponential Linear Logic , 2016, CSL.
[18] Laurent Regnier,et al. The differential lambda-calculus , 2003, Theor. Comput. Sci..
[19] Thomas Ehrhard,et al. Differential Interaction Nets , 2005, WoLLIC.