Semantic Relations Between Nominals

People make sense of a text by identifying the semantic relations which connect the entities or concepts described by that text. A system which aspires to human-like performance must also be equipped to identify, and learn from, semantic relations in the texts it processes. Understanding even a simple sentence such as "Opportunity and Curiosity find similar rocks on Mars" requires recognizing relations (rocks are located on Mars, signalled by the word on) and drawing on already known relations (Opportunity and Curiosity are instances of the class of Mars rovers). A language-understanding system should be able to find such relations in documents and progressively build a knowledge base or even an ontology. Resources of this kind assist continuous learning and other advanced language-processing tasks such as text summarization, question answering and machine translation. The book discusses the recognition in text of semantic relations which capture interactions between base noun phrases. After a brief historical background, we introduce a range of relation inventories of varying granularity, which have been proposed by computational linguists. There is also variation in the scale at which systems operate, from snippets all the way to the whole Web, and in the techniques of recognizing relations in texts, from full supervision through weak or distant supervision to self-supervised or completely unsupervised methods. A discussion of supervised learning covers available datasets, feature sets which describe relation instances, and successful algorithms. An overview of weakly supervised and unsupervised learning zooms in on the acquisition of relations from large corpora with hardly any annotated data. We show how bootstrapping from seed examples or patterns scales up to very large text collections on the Web. We also present machine learning techniques in which data redundancy and variability lead to fast and reliable relation extraction. Table of Contents: Introduction / Relations between Nominals, Relations between Concepts / Extracting Semantic Relations with Supervision / Extracting Semantic Relations with Little or No Supervision / Conclusion

[1]  Oren Etzioni,et al.  Entity Linking at Web Scale , 2012, AKBC-WEKEX@NAACL-HLT.

[2]  Roman Yangarber,et al.  Counter-Training in Discovery of Semantic Patterns , 2003, ACL.

[3]  L. Getoor,et al.  1 Global Inference for Entity and Relation Identification via a Linear Programming Formulation , 2007 .

[4]  Lukás Burget,et al.  Recurrent neural network based language model , 2010, INTERSPEECH.

[5]  S. Laurence,et al.  Concepts: Core Readings , 1999 .

[6]  John McCarthy,et al.  Programs with common sense , 1960 .

[7]  Marian Olteanu,et al.  Support Vector Machines Applied to the Classification of Semantic Relations in Nominalized Noun Phrases , 2004, HLT-NAACL 2004.

[8]  Eduard H. Hovy,et al.  A Taxonomy, Dataset, and Classifier for Automatic Noun Compound Interpretation , 2010, ACL.

[9]  Gerhard Weikum,et al.  Database and information-retrieval methods for knowledge discovery , 2009, CACM.

[10]  Jean-Michel Renders,et al.  Word-Sequence Kernels , 2003, J. Mach. Learn. Res..

[11]  Ellen Riloff,et al.  Semantic Class Learning from the Web with Hyponym Pattern Linkage Graphs , 2008, ACL.

[12]  Oren Etzioni,et al.  Unsupervised Methods for Determining Object and Relation Synonyms on the Web , 2014, J. Artif. Intell. Res..

[13]  Lucien Tesnière Éléments de syntaxe structurale , 1959 .

[14]  Tom M. Mitchell,et al.  Incorporating Vector Space Similarity in Random Walk Inference over Knowledge Bases , 2014, EMNLP.

[15]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[16]  Razvan C. Bunescu,et al.  A Shortest Path Dependency Kernel for Relation Extraction , 2005, HLT.

[17]  Siddharth Patwardhan,et al.  Effective Information Extraction with Semantic Affinity Patterns and Relevant Regions , 2007, EMNLP.

[18]  Andrew Y. Ng,et al.  Semantic Compositionality through Recursive Matrix-Vector Spaces , 2012, EMNLP.

[19]  Dmitry Zelenko,et al.  Kernel methods for relation extraction , 2003 .

[20]  Daniel S. Weld,et al.  Autonomously semantifying wikipedia , 2007, CIKM '07.

[21]  Zhiyuan Liu,et al.  Learning Entity and Relation Embeddings for Knowledge Graph Completion , 2015, AAAI.

[22]  Oren Etzioni,et al.  Identifying Relations for Open Information Extraction , 2011, EMNLP.

[23]  Omer Levy,et al.  Linguistic Regularities in Sparse and Explicit Word Representations , 2014, CoNLL.

[24]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[25]  Andrew Y. Ng,et al.  Parsing Natural Scenes and Natural Language with Recursive Neural Networks , 2011, ICML.

[26]  Don R. Swanson,et al.  Two medical literatures that are logically but not bibliographically connected , 1987, J. Am. Soc. Inf. Sci..

[27]  Oren Etzioni,et al.  Open Information Extraction from the Web , 2007, CACM.

[28]  Oren Etzioni,et al.  Relational Web Search , 2006 .

[29]  Mirella Lapata,et al.  Composition in Distributional Models of Semantics , 2010, Cogn. Sci..

[30]  Lucy Vanderwende,et al.  Algorithm for Automatic Interpretation of Noun Sequences , 1994, COLING.

[31]  Diarmuid Ó Séaghdha Learning compound noun semantics , 2008 .

[32]  Ralph Grishman,et al.  Message Understanding Conference- 6: A Brief History , 1996, COLING.

[33]  George A. Miller,et al.  Squibs and Discussions: WordNet Nouns: Classes and Instances , 2006, CL.

[34]  Estevam R. Hruschka,et al.  Toward an Architecture for Never-Ending Language Learning , 2010, AAAI.

[35]  Patrick Pantel,et al.  Discovering word senses from text , 2002, KDD.

[36]  Roberto Navigli,et al.  Word sense disambiguation: A survey , 2009, CSUR.

[37]  M. Ross Quillian,et al.  A revised design for an understanding machine , 1962, Mech. Transl. Comput. Linguistics.

[38]  Erik T. Mueller,et al.  Open Mind Common Sense: Knowledge Acquisition from the General Public , 2002, OTM.

[39]  Michael L. Littman,et al.  Corpus-based Learning of Analogies and Semantic Relations , 2005, Machine Learning.

[40]  Zhu Qiaoming,et al.  Label propagation via bootstrapped support vectors for semantic relation extraction between named entities , 2009 .

[41]  Preslav Nakov,et al.  Combining Relational and Attributional Similarity for Semantic Relation Classification , 2011, RANLP.

[42]  Andrew McCallum,et al.  Relation Extraction with Matrix Factorization and Universal Schemas , 2013, NAACL.

[43]  Dekang Lin LaTaT: Language and Text Analysis Tools , 2001, HLT.

[44]  Andrew McCallum,et al.  Integrating Probabilistic Extraction Models and Data Mining to Discover Relations and Patterns in Text , 2006, NAACL.

[45]  Alla Rozovskaya,et al.  UIUC: A Knowledge-rich Approach to Identifying Semantic Relations between Nominals , 2007, ACL 2007.

[46]  Anna Wierzbicka,et al.  apples are not a “kind of fruit”: the semantics of human categorization , 1984 .

[47]  Christopher S. G. Khoo,et al.  Semantic relations in information science , 2006 .

[48]  Diarmuid Ó Séaghdha,et al.  Semantic Classification with Distributional Kernels , 2008, COLING.

[49]  Marius Pasca,et al.  Organizing and searching the world wide web of facts -- step two: harnessing the wisdom of the crowds , 2007, WWW '07.

[50]  H. Kucera,et al.  Computational analysis of present-day American English , 1967 .

[51]  Heng Ji,et al.  A Dependency-Based Neural Network for Relation Classification , 2015, ACL.

[52]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[53]  Jason Weston,et al.  Learning Structured Embeddings of Knowledge Bases , 2011, AAAI.

[54]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[55]  Preslav Nakov,et al.  Improved Statistical Machine Translation Using Monolingual Paraphrases , 2008, ECAI.

[56]  Ludger Jansen,et al.  Aristotle’s Categories , 2007 .

[57]  Mark Stevenson,et al.  A Semantic Approach to IE Pattern Induction , 2005, ACL.

[58]  Ignacio Iacobacci,et al.  SensEmbed: Learning Sense Embeddings for Word and Relational Similarity , 2015, ACL.

[59]  Tom M. Mitchell,et al.  Efficient and Expressive Knowledge Base Completion Using Subgraph Feature Extraction , 2015, EMNLP.

[60]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[61]  Ari Rappoport,et al.  Unsupervised Discovery of Generic Relationships Using Pattern Clusters and its Evaluation by Automatically Generated SAT Analogy Questions , 2008, ACL.

[62]  Ronen Feldman,et al.  Using Corpus Statistics on Entities to Improve Semi-supervised Relation Extraction from the Web , 2007, ACL.

[63]  Sergey Brin,et al.  Extracting Patterns and Relations from the World Wide Web , 1998, WebDB.

[64]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[65]  Chang Wang,et al.  Relation Extraction with Relation Topics , 2011, EMNLP.

[66]  Jianfeng Gao,et al.  Embedding Entities and Relations for Learning and Inference in Knowledge Bases , 2014, ICLR.

[67]  Andrew McCallum,et al.  Modeling Relations and Their Mentions without Labeled Text , 2010, ECML/PKDD.

[68]  Wei Li,et al.  Early results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web-Enhanced Lexicons , 2003, CoNLL.

[69]  Stan Szpakowicz,et al.  Learning Noun-Modifier Semantic Relations with Corpus-based and WordNet-based Features , 2006, AAAI.

[70]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[71]  Pradeep Ravikumar,et al.  A Comparison of String Distance Metrics for Name-Matching Tasks , 2003, IIWeb.

[72]  Stan Szpakowicz,et al.  Semi-Automatic Recognition of Noun Modifier Relationships , 1998, ACL.

[73]  Kai-Wei Chang,et al.  Typed Tensor Decomposition of Knowledge Bases for Relation Extraction , 2014, EMNLP.

[74]  Hwee Tou Ng,et al.  A Generative Model for Parsing Natural Language to Meaning Representations , 2008, EMNLP.

[75]  Jun Zhao,et al.  Learning to Represent Knowledge Graphs with Gaussian Embedding , 2015, CIKM.

[76]  Ramesh Nallapati,et al.  Multi-instance Multi-label Learning for Relation Extraction , 2012, EMNLP.

[77]  Preslav Nakov,et al.  UCB: System Description for SemEval Task #4 , 2007, SemEval@ACL.

[78]  Dan Roth,et al.  Exploiting Background Knowledge for Relation Extraction , 2010, COLING.

[79]  Heng Ji,et al.  Incremental Joint Extraction of Entity Mentions and Relations , 2014, ACL.

[80]  Nancy Ide,et al.  Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art , 1998, Comput. Linguistics.

[81]  Mitchell P. Marcus,et al.  Text Chunking using Transformation-Based Learning , 1995, VLC@ACL.

[82]  Jan Svartvik,et al.  A __ comprehensive grammar of the English language , 1988 .

[83]  Jun Zhao,et al.  Relation Classification via Convolutional Deep Neural Network , 2014, COLING.

[84]  Jane T Nutter A Lexical Relation Hierarchy , 1989 .

[85]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[86]  K. Cohen,et al.  Biomedical language processing: what's beyond PubMed? , 2006, Molecular cell.

[87]  Geoffrey E. Hinton,et al.  Learning Hierarchical Structures with Linear Relational Embedding , 2001, NIPS.

[88]  Jürgen Schmidhuber,et al.  Artificial curiosity based on discovering novel algorithmic predictability through coevolution , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[89]  Geoffrey E. Hinton,et al.  Using matrices to model symbolic relationship , 2008, NIPS.

[90]  Miguel A. Andrade-Navarro,et al.  Automatic Extraction of Biological Information from Scientific Text: Protein-Protein Interactions , 1999, ISMB.

[91]  John Miller,et al.  Traversing Knowledge Graphs in Vector Space , 2015, EMNLP.

[92]  Michael J. Witbrock,et al.  An Introduction to the Syntax and Content of Cyc , 2006, AAAI Spring Symposium: Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering.

[93]  Dan I. Moldovan,et al.  Learning Semantic Constraints for the Automatic Discovery of Part-Whole Relations , 2003, NAACL.

[94]  Estevam R. Hruschka,et al.  Discovering Relations between Noun Categories , 2011, EMNLP.

[95]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[96]  Mark Dredze,et al.  Improved Relation Extraction with Feature-Rich Compositional Embedding Models , 2015, EMNLP.

[97]  Philip S. Yu,et al.  Spectral clustering for multi-type relational data , 2006, ICML.

[98]  Daniel Jurafsky,et al.  Learning Syntactic Patterns for Automatic Hypernym Discovery , 2004, NIPS.

[99]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[100]  Barbara Rosario,et al.  Classifying Semantic Relations in Bioscience Texts , 2004, ACL.

[101]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[102]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[103]  Luis Gravano,et al.  Snowball: extracting relations from large plain-text collections , 2000, DL '00.

[104]  Martin Chodorow,et al.  Extracting Semantic Hierarchies from a Large On-Line Dictionary , 1985, ACL.

[105]  Stanley Y. W. Su A Semantic Theory Based Upon Interactive Meaning , 1969 .

[106]  Beatrice Warren,et al.  Semantic patterns of noun-noun compounds , 1978 .

[107]  Robert L. Mercer,et al.  Class-Based n-gram Models of Natural Language , 1992, CL.

[108]  Nicoletta Calzolari,et al.  Principles for encoding machine readable dictionaries , 1992 .

[109]  Martha W. Evens,et al.  Parsing vs. Text Processing in the Analysis of Dictionary Definitions , 1988, ACL.

[110]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[111]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[112]  Rosemary Leonard,et al.  The Interpretation of English Noun Sequences on the Computer , 1984 .

[113]  Doug Downey,et al.  Analysis of a probabilistic model of redundancy in unsupervised information extraction , 2010, Artif. Intell..

[114]  Zhen Wang,et al.  Knowledge Graph Embedding by Translating on Hyperplanes , 2014, AAAI.

[115]  Tony Veale,et al.  A Concept-Centered Approach to Noun-Compound Interpretation , 2008, COLING.

[116]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[117]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[118]  Joseph Weizenbaum,et al.  and Machine , 1977 .

[119]  Simone Pribbenow,et al.  Midwinters, end games, and body parts: a classification of part-whole relations , 1995, Int. J. Hum. Comput. Stud..

[120]  Preslav Nakov,et al.  Solving Relational Similarity Problems Using the Web as a Corpus , 2008, ACL.

[121]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[122]  Ramanathan V. Guha,et al.  Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project , 1990 .

[123]  Preslav Nakov,et al.  SemEval-2010 Task 9: The Interpretation of Noun Compounds Using Paraphrasing Verbs and Prepositions , 2010, SemEval@ACL.

[124]  Danqi Chen,et al.  Reasoning With Neural Tensor Networks for Knowledge Base Completion , 2013, NIPS.

[125]  Patrick Pantel,et al.  Espresso: Leveraging Generic Patterns for Automatically Harvesting Semantic Relations , 2006, ACL.

[126]  Dan I. Moldovan,et al.  On the semantics of noun compounds , 2005, Comput. Speech Lang..

[127]  James Pustejovsky,et al.  Robust Relational Parsing Over Biomedical Literature: Extracting Inhibit Relations , 2001, Pacific Symposium on Biocomputing.

[128]  Richard M. Schwartz,et al.  An Algorithm that Learns What's in a Name , 1999, Machine Learning.

[129]  Jun Suzuki,et al.  Hierarchical Directed Acyclic Graph Kernel: Methods for Structured Natural Language Data , 2003, ACL.

[130]  Terry Winograd,et al.  Understanding natural language , 1974 .

[131]  Barbara Rosario,et al.  Classifying the Semantic Relations in Noun Compounds via a Domain-Specific Lexical Hierarchy , 2001, EMNLP.

[132]  Andrew McCallum,et al.  Joint inference of entities, relations, and coreference , 2013, AKBC '13.

[133]  Dan Moldovan,et al.  Models for the Semantic Classification of Noun Phrases , 2004, HLT-NAACL 2004.

[134]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[135]  Michael Strube,et al.  Transforming Wikipedia into a large scale multilingual concept network , 2013, Artif. Intell..

[136]  Simonetta Montemagni,et al.  Structural Patterns vs. String Patterns for Extracting Semantic Information from Dictionaries , 1992, COLING.

[137]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[138]  Guodong Zhou,et al.  Tree Kernel-Based Relation Extraction with Context-Sensitive Structured Parse Tree Information , 2007, EMNLP.

[139]  Wanxiang Che,et al.  Learning Semantic Hierarchies via Word Embeddings , 2014, ACL.

[140]  L. Murphy Semantic Relations and the Lexicon , 2003 .

[141]  Jun Zhao,et al.  Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks , 2015, EMNLP.

[142]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[143]  Yoshua Bengio,et al.  A Neural Probabilistic Language Model , 2003, J. Mach. Learn. Res..

[144]  Michael Gamon,et al.  Representing Text for Joint Embedding of Text and Knowledge Bases , 2015, EMNLP.

[145]  Ted Briscoe,et al.  The Second Release of the RASP System , 2006, ACL.

[146]  Peter D. Turney Similarity of Semantic Relations , 2006, CL.

[147]  Daniel Jurafsky,et al.  Distant supervision for relation extraction without labeled data , 2009, ACL.

[148]  Tom M. Mitchell,et al.  Improving Learning and Inference in a Large Knowledge-Base using Latent Syntactic Cues , 2013, EMNLP.

[149]  Preslav Nakov,et al.  SemEval-2 Task 9: The Interpretation of Noun Compounds Using Paraphrasing Verbs and Prepositions , 2009, HLT-NAACL 2009.

[150]  Estevam R. Hruschka,et al.  Coupled semi-supervised learning for information extraction , 2010, WSDM '10.

[151]  Oren Etzioni,et al.  The Tradeoffs Between Open and Traditional Relation Extraction , 2008, ACL.

[152]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[153]  Dan Klein,et al.  A Multi-Teraflop Constituency Parser using GPUs , 2013, EMNLP.

[154]  Daniel S. Weld,et al.  Learning 5000 Relational Extractors , 2010, ACL.

[155]  Dirk Geeraerts,et al.  Theories of Lexical Semantics , 2010 .

[156]  Bowen Zhou,et al.  Classifying Relations by Ranking with Convolutional Neural Networks , 2015, ACL.

[157]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[158]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[159]  Preslav Nakov Noun Compound Interpretation Using Paraphrasing Verbs: Feasibility Study , 2008, AIMSA.

[160]  Jeffrey Pennington,et al.  Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection , 2011, NIPS.

[161]  Douglas E. Appelt,et al.  FASTUS: A Cascaded Finite-State Transducer for Extracting Information from Natural-Language Text , 1997, ArXiv.

[162]  Jari Björne,et al.  Comparative analysis of five protein-protein interaction corpora , 2008, BMC Bioinformatics.

[163]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[164]  Ralph Grishman,et al.  Relation Extraction: Perspective from Convolutional Neural Networks , 2015, VS@HLT-NAACL.

[165]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[166]  Mark Craven,et al.  Representing Sentence Structure in Hidden Markov Models for Information Extraction , 2001, IJCAI.

[167]  Richard Tobin,et al.  Datasets for generic relation extraction* , 2011, Natural Language Engineering.

[168]  R. Girju,et al.  A knowledge-rich approach to identifying semantic relations between nominals , 2010, Inf. Process. Manag..

[169]  Alessandro Moschitti,et al.  Convolution Kernels on Constituent, Dependency and Sequential Structures for Relation Extraction , 2009, EMNLP.

[170]  Ralph Grishman,et al.  The NomBank Project: An Interim Report , 2004, FCP@NAACL-HLT.

[171]  Oren Etzioni,et al.  Identifying Functional Relations in Web Text , 2010, EMNLP.

[172]  William Pao,et al.  ALK Mutations Conferring Differential Resistance to Structurally Diverse ALK Inhibitors , 2011, Clinical Cancer Research.

[173]  Timothy Baldwin,et al.  Automatic Interpretation of Noun Compounds Using WordNet Similarity , 2005, IJCNLP.

[174]  Maria Lapata,et al.  The Disambiguation of Nominalizations , 2002, CL.

[175]  Andrew McCallum,et al.  Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space , 2014, EMNLP.

[176]  Zornitsa Kozareva,et al.  A Semi-Supervised Method to Learn and Construct Taxonomies Using the Web , 2010, EMNLP.

[177]  Tom M. Mitchell,et al.  Random Walk Inference and Learning in A Large Scale Knowledge Base , 2011, EMNLP.

[178]  Geoffrey J. Gordon,et al.  Relational learning via collective matrix factorization , 2008, KDD.

[179]  Barbara Rosario,et al.  The Descent of Hierarchy, and Selection in Relational Semantics , 2002, ACL.

[180]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[181]  Sampo Pyysalo,et al.  Overview of BioNLP’09 Shared Task on Event Extraction , 2009, BioNLP@HLT-NAACL.

[182]  Omer Levy,et al.  Neural Word Embedding as Implicit Matrix Factorization , 2014, NIPS.

[183]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[184]  Nello Cristianini,et al.  Classification using String Kernels , 2000 .

[185]  Ni Lao,et al.  Reading The Web with Learned Syntactic-Semantic Inference Rules , 2012, EMNLP.

[186]  Patrick Pantel,et al.  Automatically Labeling Semantic Classes , 2004, NAACL.

[187]  Andrew McCallum,et al.  Compositional Vector Space Models for Knowledge Base Completion , 2015, ACL.

[188]  Hans-Peter Kriegel,et al.  Extraction of semantic biomedical relations from text using conditional random fields , 2008, BMC Bioinformatics.

[189]  Preslav Nakov,et al.  SemEval-2007 Task 04: Classification of Semantic Relations between Nominals , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[190]  Maria Leonor Pacheco,et al.  of the Association for Computational Linguistics: , 2001 .

[191]  Diarmuid Ó Séaghdha,et al.  Using Lexical and Relational Similarity to Classify Semantic Relations , 2009, EACL.

[192]  Bing Liu,et al.  Extracting Web Data Using Instance-Based Learning , 2007, World Wide Web.

[193]  K. Bretonnel Cohen,et al.  Frontiers of biomedical text mining: current progress , 2007, Briefings Bioinform..

[194]  Bhavani M. Thuraisingham,et al.  Adversarial support vector machine learning , 2012, KDD.

[195]  Douglas Herrmann,et al.  A Taxonomy of Part-Whole Relations , 1987, Cogn. Sci..

[196]  Daniel S. Weld,et al.  Open Information Extraction Using Wikipedia , 2010, ACL.

[197]  Peter D. Turney Expressing Implicit Semantic Relations without Supervision , 2006, ACL.

[198]  Jun Zhao,et al.  Knowledge Graph Embedding via Dynamic Mapping Matrix , 2015, ACL.

[199]  Ann Copestake,et al.  Co-occurrence Contexts for Noun Compound Interpretation , 2007 .

[200]  Nello Cristianini,et al.  Composite Kernels for Hypertext Categorisation , 2001, ICML.

[201]  Dan Roth,et al.  Design Challenges and Misconceptions in Named Entity Recognition , 2009, CoNLL.

[202]  Jason Weston,et al.  Connecting Language and Knowledge Bases with Embedding Models for Relation Extraction , 2013, EMNLP.

[203]  Oren Etzioni,et al.  Unsupervised Resolution of Objects and Relations on the Web , 2007, NAACL.

[204]  Frank Keller,et al.  The Web as a Baseline: Evaluating the Performance of Unsupervised Web-based Models for a Range of NLP Tasks , 2004, NAACL.

[205]  Mark Stevenson,et al.  Improving Semi-supervised Acquisition of Relation Extraction Patterns , 2006 .

[206]  Charles S. Peirce,et al.  The Philosophy of Peirce : Selected Writings , 1941 .

[207]  Patrick Pantel,et al.  Discovery of inference rules for question-answering , 2001, Natural Language Engineering.

[208]  Jeffrey P. Bigham,et al.  Names and Similarities on the Web: Fact Extraction in the Fast Lane , 2006, ACL.

[209]  Dan Klein,et al.  Learning Dependency-Based Compositional Semantics , 2011, CL.

[210]  Alessandro Moschitti,et al.  On Reverse Feature Engineering of Syntactic Tree Kernels , 2010, CoNLL.

[211]  Sanda M. Harabagiu,et al.  UTD: Classifying Semantic Relations by Combining Lexical and Semantic Resources , 2010, *SEMEVAL.

[212]  Judith N. Levi,et al.  The syntax and semantics of complex nominals , 1978 .

[213]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[214]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[215]  Yang Jin,et al.  Simple Algorithms for Complex Relation Extraction with Applications to Biomedical IE , 2005, ACL.

[216]  Eduard H. Hovy,et al.  Learning surface text patterns for a Question Answering System , 2002, ACL.

[217]  Alessandro Moschitti,et al.  Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees , 2006, ECML.

[218]  Dongyan Zhao,et al.  Semantic Relation Classification via Convolutional Neural Networks with Simple Negative Sampling , 2015, EMNLP.

[219]  James Pustejovsky,et al.  The Generative Lexicon , 1995, CL.

[220]  Jeffrey P. Bigham,et al.  Organizing and Searching the World Wide Web of Facts - Step One: The One-Million Fact Extraction Challenge , 2006, AAAI.

[221]  Barbara Rosario,et al.  Multi-way Relation Classification: Application to Protein-Protein Interactions , 2005, HLT.

[222]  Ivan Titov,et al.  Semantic Role Labeling , 2010, HLT-NAACL.

[223]  Doug Downey,et al.  Unsupervised named-entity extraction from the Web: An experimental study , 2005, Artif. Intell..

[224]  Mark Craven,et al.  Constructing Biological Knowledge Bases by Extracting Information from Text Sources , 1999, ISMB.

[225]  A. Valencia,et al.  Overview of the protein-protein interaction annotation extraction task of BioCreative II , 2008, Genome Biology.

[226]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[227]  Seana Coulson,et al.  Semantic Leaps: FRAME-SHIFTING , 2001 .

[228]  Distant Supervision for Relation Extraction with Matrix Completion , 2014, ACL.

[229]  Eugene Charniak,et al.  Finding Parts in Very Large Corpora , 1999, ACL.

[230]  Doug Downey,et al.  A Probabilistic Model of Redundancy in Information Extraction , 2005, IJCAI.

[231]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[232]  Makoto Miwa,et al.  Modeling Joint Entity and Relation Extraction with Table Representation , 2014, EMNLP.

[233]  Aapo Hyvärinen,et al.  Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics , 2012, J. Mach. Learn. Res..

[234]  Pamela A. Downing On the Creation and Use of English Compound Nouns. , 1977 .

[235]  Luke S. Zettlemoyer,et al.  Knowledge-Based Weak Supervision for Information Extraction of Overlapping Relations , 2011, ACL.

[236]  Robert A. Amsler,et al.  A Taxonomy for English Nouns and Verbs , 1981, ACL.

[237]  Preslav Nakov,et al.  Classification of semantic relations between nominals , 2009, Lang. Resour. Evaluation.

[238]  Pedro M. Domingos,et al.  Adversarial classification , 2004, KDD.

[239]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[240]  Michael Collins,et al.  Convolution Kernels for Natural Language , 2001, NIPS.

[241]  Hans-Peter Kriegel,et al.  A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.