Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions

[1]  I. Ortas,et al.  DO MAIZE AND PEPPER PLANTS DEPEND ON MYCORRHIZAE IN TERMS OF PHOSPHORUS AND ZINC UPTAKE? , 2012 .

[2]  S. Impa,et al.  Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research , 2012, Plant and Soil.

[3]  T. Cavagnaro,et al.  Variations in the chemical composition of cassava ( Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation. , 2012, Journal of agricultural and food chemistry.

[4]  S. J. Watts‐Williams,et al.  Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition , 2012, Biology and Fertility of Soils.

[5]  M. Rillig,et al.  Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010 , 2012, Mycorrhiza.

[6]  K. Shea,et al.  Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants. , 2011, Annals of botany.

[7]  T. Cavagnaro,et al.  Arbuscular mycorrhizas in southeastern Australian processing tomato farm soils , 2011, Plant and Soil.

[8]  E. Sakin,et al.  The effects of increased phosphorus application on shoot dry matter, shoot P and Zn concentrations in wheat (Triticum durum L.) and maize (Zea mays L.) grown in a calcareous soil , 2010 .

[9]  T. Cavagnaro,et al.  Arbuscular mycorrhizas modify plant responses to soil zinc addition , 2010, Plant and Soil.

[10]  J. Facelli,et al.  Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. , 2010, The New phytologist.

[11]  S. Kafkas,et al.  Various Mycorrhizal Fungi Enhance Dry Weights, P and Zn Uptake of Four Pistacia Species , 2009 .

[12]  T. Cavagnaro The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review , 2008, Plant and Soil.

[13]  M. González-Guerrero,et al.  Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. , 2008, Canadian journal of microbiology.

[14]  M. V. D. van der Heijden,et al.  Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species , 2007 .

[15]  Andrew D. Bowen,et al.  X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. , 2007, Environmental microbiology.

[16]  I. Cardoso,et al.  Mycorrhizas and tropical soil fertility , 2006 .

[17]  E. George,et al.  Contribution of Mycorrhizal Hyphae to the Uptake of Metal Cations by Cucumber Plants at Two Levels of Phosphorus Supply , 2005, Plant and Soil.

[18]  I. Jakobsen,et al.  Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. , 2005, The New phytologist.

[19]  D. Eide,et al.  Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. , 2005, Fungal genetics and biology : FG & B.

[20]  P. Christie,et al.  Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc , 2004, Plant and Soil.

[21]  G. Feng,et al.  Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc , 2004, Plant and Soil.

[22]  L. Kochian,et al.  How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. , 2003, The New phytologist.

[23]  S. Burleigh,et al.  A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization , 2003, Plant Molecular Biology.

[24]  J. Angus,et al.  Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield , 2003, Plant and Soil.

[25]  M. V. D. van der Heijden,et al.  Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. , 2003, The New phytologist.

[26]  M. Wong,et al.  The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. , 2003, Chemosphere.

[27]  Y. Bi,et al.  Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. , 2003, Chemosphere.

[28]  T. Cavagnaro,et al.  Growth and phosphorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis. , 2003, The New phytologist.

[29]  Z. Kaya,et al.  MYCORRHIZAL DEPENDENCY OF SOUR ORANGE IN RELATION TO PHOSPHORUS AND ZINC NUTRITION , 2002 .

[30]  B. Sarkar,et al.  Heavy Metals in the Environment , 2002 .

[31]  Yong-guan Zhu,et al.  Zinc (Zn)-phosphorus (P) Interactions in Two Cultivars of Spring Wheat (Triticum aestivum L.) Differing in P Uptake Efficiency , 2001 .

[32]  P. Christie,et al.  Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. , 2001, Chemosphere.

[33]  T. Cavagnaro,et al.  Quantitative development of Paris-type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum. , 2001, The New phytologist.

[34]  R. Clárk,et al.  Mineral acquisition by arbuscular mycorrhizal plants , 2000 .

[35]  B. Ma,et al.  Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels , 2000, Mycorrhiza.

[36]  P. B. Tinker,et al.  Solute Movement in the Rhizosphere , 2000 .

[37]  R. M. Miller,et al.  X-ray imaging and microspectroscopy of plants and fungi. , 1998, Journal of synchrotron radiation.

[38]  S. Barker,et al.  A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. , 1998, The Plant journal : for cell and molecular biology.

[39]  T. Pawlowska,et al.  The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland , 1997, Mycorrhiza.

[40]  G. Díaz,et al.  Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides , 1996, Plant and Soil.

[41]  C. Leyval,et al.  Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture , 1995, Plant and Soil.

[42]  R. Koide,et al.  The effects of mycorrhizal infection on components of plant growth and reproduction. , 1994, The New phytologist.

[43]  B. Dell,et al.  Nutrient uptake in mycorrhizal symbiosis , 1994, Plant and Soil.

[44]  C. Leyval,et al.  Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils , 1993, Plant and Soil.

[45]  N. Bolan A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants , 1991, Plant and Soil.

[46]  J. L. Wasserman,et al.  Detection of heavy metals in oak mycorrhizae of northeastern Pennsylvania forests, using x-ray microanalysis , 1987 .

[47]  H. Marschner,et al.  Mechanism of phosphorus-induced zinc deficiency in cotton. I: Zinc deficiency-enhanced uptake rate of phosphorus , 1986 .

[48]  P. Tinker,et al.  INTERACTIONS OF VESICULAR‐ARBUSCULAR MYCORRHIZAL INFECTION AND HEAVY METALS IN PLANTS , 1983 .

[49]  D. Read,et al.  Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris , 1981 .

[50]  L. W. Timmer,et al.  The relationship of mycorrhizal infection to phosphorus-induced copper deficiency in sour orange seedlings. , 1980 .

[51]  Manuela Giovannetti,et al.  AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS , 1980 .

[52]  J. Rue,et al.  Mycorrhizal fungi and peach nursery nutrition , 1975 .

[53]  J. M. Phillips,et al.  Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. , 1970 .

[54]  O. Alizadeh,et al.  Mycorrhizal Symbiosis , 1986, Forest Science.

[55]  R. Koide Mycorrhizal Symbiosis and Plant Reproduction , 2010 .

[56]  P. Marschner,et al.  Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere , 2005 .

[57]  Y. Kapulnik,et al.  Arbuscular Mycorrhizas: Physiology and Function , 2000, Springer Netherlands.

[58]  A. P. Schwab,et al.  Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. , 1994, Environmental pollution.

[59]  A. Fredeen,et al.  Influence of Phosphorus Nutrition on Growth and Carbon Partitioning in Glycine max. , 1989, Plant physiology.

[60]  T. Dueck,et al.  Vesicular-arbuscular mycorrhizae decrease zinc-toxicity to grasses growing in zinc-polluted soil , 1986 .

[61]  D. Wilkins,et al.  Zinc tolerance of mycorrhizal Betula , 1985 .

[62]  N. Bolan,et al.  Increasing phosphorus supply can increase the infection of plant roots by vesicular-arbuscular mycorrhizal fungi , 1984 .

[63]  J. H. Zar,et al.  Biostatistical Analysis (5th Edition) , 1984 .