Au modified Nd-doped In2O3 hollow microspheres for high performance triethylamine gas sensor

[1]  Yong-Hui Zhang,et al.  Au-modified spindle ZnO for high efficiency H2 sensors , 2023, Vacuum.

[2]  Jianliang Cao,et al.  Hydrothermal synthesis of Zn-doped α-Fe2O3 nanocubes for selective detection of triethylamine , 2022, Vacuum.

[3]  Y. Nagarjuna,et al.  Catalytic effect of Ag embedded with ZnO prepared by Co-sputtering on H2S gas sensing MEMS device , 2022, Vacuum.

[4]  L. Hultman,et al.  A step-by-step guide to perform x-ray photoelectron spectroscopy , 2022, Journal of Applied Physics.

[5]  Yan Wang,et al.  Ultrahigh methane sensing properties based on Ni-doped hierarchical porous In2O3 microspheres at low temperature , 2022, Vacuum.

[6]  G. Lu,et al.  High Sensitivity and Low Detection Limit of Acetone Sensor Based on Ru-Doped Co3o4 Flower-Like Hollow Microspheres , 2022, SSRN Electronic Journal.

[7]  Xuchuan Jiang,et al.  Synergistic Effect of Au-PdO Modified Cu-Doped K2W4O13 Nanowires for Dual Selectivity High Performance Gas Sensing. , 2022, ACS applied materials & interfaces.

[8]  G. Lu,et al.  Lower coordination Co3O4 mesoporous hierarchical microspheres for comprehensive sensitization of triethylamine vapor sensor. , 2022, Journal of hazardous materials.

[9]  Yan Zhang,et al.  Mechanism analysis of PtPd-decorated hexagonal WO3 nanorods for H2S sensing application with ppt-level detection limit , 2022, Journal of Alloys and Compounds.

[10]  Jun Yu,et al.  P-type Sb doping hierarchical WO3 microspheres for superior close to room temperature ammonia sensor , 2022, Sensors and Actuators B: Chemical.

[11]  Baoyu Huang,et al.  Enhanced sensing performance of Au-decorated TiO2 nanospheres with hollow structure for formaldehyde detection at room temperature , 2022, Sensors and Actuators B: Chemical.

[12]  Jinglong Bai,et al.  Ag modified Tb-doped double-phase In2O3 for ultrasensitive hydrogen gas sensor , 2022, Applied Surface Science.

[13]  Hui Wang,et al.  Heterogeneous Co3O4/Carbon Nanofibers for Low Temperature Triethylamine Detection: Mechanistic Insights by Operando DRIFTS and DFT , 2021, Advanced Materials Interfaces.

[14]  Y. Chen,et al.  Design of MoS2/ZnO bridge-like hetero-nanostructures to boost triethylamine (TEA) sensing , 2021, Vacuum.

[15]  N. Bârsan,et al.  Effects of Gas Adsorption Properties of an Au-Loaded Porous In2O3 Sensor on NO2-Sensing Properties. , 2021, ACS sensors.

[16]  Yongjiao Sun,et al.  Synthesis of In2O3 nanocubes, nanocube clusters, and nanocubes-embedded Au nanoparticles for conductometric CO sensors , 2021 .

[17]  L. Hultman,et al.  The same chemical state of carbon gives rise to two peaks in X-ray photoelectron spectroscopy , 2021, Scientific Reports.

[18]  Xuchuan Jiang,et al.  Bimetal Au-Pd decorated hierarchical WO3 nanowire bundles for gas sensing application , 2021 .

[19]  Chenghang Zheng,et al.  Enhanced NO2 gas sensing properties based on Rb-doped hierarchical flower-like In2O3 microspheres at low temperature , 2021 .

[20]  S. Pei,et al.  Constructed heterostructured SnS@MoO3 hollow nanotubes and detected sensing properties towards TEA , 2020 .

[21]  D. Sastikumar,et al.  Unequivocal evidence of enhanced room temperature sensing properties of clad modified Nd doped mullite Bi2Fe4O9 in fiber optic gas sensor , 2020 .

[22]  Junpeng Wang,et al.  Urchin-Like WO2.72 Microspheres Decorated with Au and PdO Nanoparticles for the Selective Detection of Trimethylamine , 2020 .

[23]  Jinglong Bai,et al.  Ni/Au bimetal decorated In2O3 nanotubes for ultra-sensitive ethanol detection , 2020 .

[24]  M. Terrones,et al.  Monolayer Vanadium‐Doped Tungsten Disulfide: A Room‐Temperature Dilute Magnetic Semiconductor , 2020, Advanced science.

[25]  Xijin Xu,et al.  Core-shell Ag@In2O3 hollow hetero-nanostructures for selective ethanol detection in air , 2020 .

[26]  L. Hultman,et al.  Compromising science by ignorant instrument calibration - need to revisit half a century of published XPS data. , 2020, Angewandte Chemie.

[27]  Dongzhi Zhang,et al.  MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing , 2019 .

[28]  Wei Luo,et al.  Rational Synthesis and Gas Sensing Performance of Ordered Mesoporous Semiconducting WO3/NiO Composites. , 2019, ACS applied materials & interfaces.

[29]  Ping Liu,et al.  In2O3 nanoplates with different crystallinity and porosity: Controllable synthesis and gas-sensing properties investigation , 2019, Journal of Alloys and Compounds.

[30]  Xijin Xu,et al.  Rational design of sensitivity enhanced and stability improved TEA gas sensor assembled with Pd nanoparticles-functionalized In2O3 composites , 2019, Sensors and Actuators B: Chemical.

[31]  Jianliang Cao,et al.  Hydrothermal Synthesis of CeO2-SnO2 Nanoflowers for Improving Triethylamine Gas Sensing Property , 2018, Nanomaterials.

[32]  L. Hultman,et al.  Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak , 2018, Applied Surface Science.

[33]  R. K. Mishra,et al.  Nanocube In2O3@RGO heterostructure based gas sensor for acetone and formaldehyde detection , 2017 .

[34]  L. Hultman,et al.  C 1s Peak of Adventitious Carbon Aligns to the Vacuum Level: Dire Consequences for Material's Bonding Assignment by Photoelectron Spectroscopy , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  Peng Song,et al.  Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles , 2017 .

[36]  Xiaolong Deng,et al.  Synthesis of Zn-doped In2O3 nano sphere architectures as a triethylamine gas sensor and photocatalytic properties , 2016 .

[37]  Yeon-Tae Yu,et al.  Enhanced H2 gas sensing properties of Au@In2O3 core–shell hybrid metal–semiconductor heteronanostructures , 2016 .

[38]  G. Lu,et al.  A low temperature operating gas sensor with high response to NO2 based on ordered mesoporous Ni-doped In2O3 , 2016 .

[39]  Yuehuan Li,et al.  Well-aligned Nd-doped SnO2 nanorod layered arrays: preparation, characterization and enhanced alcohol-gas sensing performance. , 2016, Physical chemistry chemical physics : PCCP.

[40]  Ki-Hyun Kim,et al.  Formation of High-Purity Indium Oxide Nanoparticles and Their Application to Sensitive Detection of Ammonia , 2015, Sensors.

[41]  Il-Doo Kim,et al.  Selective and sensitive detection of trimethylamine using ZnO-In2O3 composite nanofibers , 2013 .

[42]  Zhongchang Wang,et al.  Impact of Nb doping on gas-sensing performance of TiO2 thick-film sensors , 2012 .

[43]  Kang Wang,et al.  Synthesis, characterization and gas sensing properties of flowerlike In2O3 composed of microrods , 2010 .

[44]  Wen Zeng,et al.  Selective Detection of Formaldehyde Gas Using a Cd-Doped TiO2-SnO2 Sensor , 2009, Sensors.

[45]  G. Lu,et al.  Homojunction between Cubic/Hexagonal CDS Nanocrystal for High and Fast Response to N-Propanol , 2022, SSRN Electronic Journal.

[46]  Liangliang Yang,et al.  Y-doped In2O3 hollow nanocubes for improved triethylamine-sensing performance , 2021 .

[47]  L. Hultman,et al.  X-ray photoelectron spectroscopy: Towards reliable binding energy referencing , 2020, Progress in Materials Science.

[48]  Yichun Liu,et al.  Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. , 2012, ACS applied materials & interfaces.