Matrix insertion-deletion systems

We investigate in this article the operations of insertion and deletion working in a matrix-controlled manner. We show that this allows to us strictly increase the computational power: in the case of systems that are not computationally complete (with total size equal to 4), the computational completeness can be obtained by introducing the matrix control and using only binary matrices.

[1]  Mark Daley,et al.  Regulated RNA rewriting: Modelling RNA editing with guided insertion , 2007, Theor. Comput. Sci..

[2]  Gheorghe Paun,et al.  Regulated Galiukschov semicontextual grammars , 1990, Kybernetika.

[3]  Lakshmanan Kuppusamy,et al.  Matrix Insertion-Deletion Systems for Bio-Molecular Structures , 2011, ICDCIT.

[4]  Gheorghe Paun,et al.  Marcus Contextual Grammars , 1994, Bull. EATCS.

[5]  Yurii Rogozhin,et al.  Insertion-Deletion Systems with One-Sided Contexts , 2007, MCU.

[6]  Takashi Yokomori,et al.  On the Computational Power of Insertion-Deletion Systems , 2002, DNA.

[7]  Sergey Verlan,et al.  On minimal context-free insertion-deletion systems , 2005, DCFS.

[8]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[9]  R. Garrett,et al.  RNA Editing: The alteration of protein coding sequences of RNA : Edited by R. Benne; Ellis Horwood, Chichester, 1993. 196 pp. $ 67.95. ISBN 0-13-782558-7 , 1994 .

[10]  Warren D. Smith DNA computers in vitro and vivo , 1995, DNA Based Computers.

[11]  David Henry Haussler Insertion and iterated insertion as operations on formal languages , 1982 .

[12]  R. Benne,et al.  RNA Editing: The Alteration of Protein Coding Sequences of RNA , 1993 .

[13]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[14]  Takashi Yokomori,et al.  On the computational power of insertion-deletion systems , 2004, Natural Computing.

[15]  Nivat G. Päun,et al.  Handbook of Formal Languages , 2013, Springer Berlin Heidelberg.

[16]  Lila Kari,et al.  Contextual Insertions/Deletions and Computability , 1996, Inf. Comput..

[17]  Rani Siromoney,et al.  Circular contextual insertions/deletions with applications to biomolecular computation , 1999, 6th International Symposium on String Processing and Information Retrieval. 5th International Workshop on Groupware (Cat. No.PR00268).

[18]  Gheorghe Paun,et al.  At the crossroads of DNA computing and formal languages: Characterizing recursively enumerable languages using insertion-deletion systems , 1997, DNA Based Computers.

[19]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[20]  Solomon Marcus,et al.  Contextual Grammars , 1969, COLING.

[21]  Artiom Alhazov,et al.  Small Size Insertion and Deletion Systems , 2010, Scientific Applications of Language Methods.

[22]  Yurii Rogozhin,et al.  Computational Power of P Systems with Small Size Insertion and Deletion Rules , 2009, CSP.

[23]  Rudolf Freund,et al.  Graph-Controlled Insertion-Deletion Systems , 2010, DCFS.

[24]  Yurii Rogozhin,et al.  Further Results on Insertion-Deletion Systems with One-Sided Contexts , 2008, LATA.

[25]  Gheorghe Paun,et al.  DNA Computing: New Computing Paradigms , 1998 .

[26]  Viliam Geffert Normal forms for phrase-structure grammars , 1991, RAIRO Theor. Informatics Appl..

[27]  David Haussler,et al.  Insertion languages , 1983, Inf. Sci..

[28]  Yurii Rogozhin,et al.  Computational power of insertion–deletion (P) systems with rules of size two , 2011, Natural Computing.

[29]  Lila Kari,et al.  On Insertion and Deletion in Formal Languages , 1991 .

[30]  Gheorghe Paun,et al.  Context-free insertion-deletion systems , 2005, Theor. Comput. Sci..