Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite

In the framework of HAIC European project, a capability for modeling glaciated and mixed-phase ice accretion has been added to IGLOO2D, the new ONERA 2D icing suite. A first set of models has been introduced for taking into account physical phenomena which are generally not considered for classical icing conditions: particle shape influence on the drag force, heat exchange between air and particles, melting and evaporation phenomena, complex particle interactions with dry and wetted walls, liquid film dynamics, influence of ice crystals on energy balance ... To assess this new capability, test cases have been performed for mixed-phase ice accretion using results from the NASA-NRC experimental database 3,4 . Nomenclature d : Particle equivalent diameter (sphere of same volume) r : Particle equivalent radius m : Particle mass T : Temperature Tf : Melting / Freezing temperature Tp,m : Mean particle temperature Tp,s : Mean surface particle temperature y, : Mass fraction h : Enthalpy per unit mass Lv : Latent heat of vaporization Lm : Latent heat of melting FD : Drag force v : Velocity w : Relative velocity between air and particle g : Gravity acceleration ρ : Density μ : Dynamic Viscosity c : Specific heat capacity k : Heat conductivity D : Diffusivity h t : Heat exchange coefficient : Ice surface energy C D : Usual particle drag coefficient C d : Normalized particle drag coefficient (based on the sphere of same volume) : Convective heat flux Re : Reynolds Number Nu : Nusselt Number Sh : Sherwood number 1 Senior Scientist, Aerodynamics and Energetic Modeling Dept., BP 4025 2 avenue Ed. Belin, Toulouse, F. 2 Research engineer, PhD, Aerodynamics and Energetic Modeling Dept., BP 4025 2 avenue Ed. Belin, Toulouse, F. 3 PhD student, Aerodynamics and Energetic Modeling Dept., BP 4025 2 avenue Ed. Belin, Toulouse, F. . 2 American Institute of Aeronautics and Astronautics Sc : Schmidt number Pr : Prandtl number : impact dimensionless parameter e : Spheroid eccentricity E : Particle aspect ratio : Particle sphericity : Particle crosswise sphericity : Particle surface area : Particle crosswise surface area Subscripts a : air c : crystals d : droplets p : particle w : water i : ice s : particle surface or solid phase l : liquid phase v : vapor phase ∞: relative free stream conditions 0 : initial condition imp: impacting droplets or crystals

[1]  Eric Loth,et al.  Drag of non-spherical solid particles of regular and irregular shape , 2008 .

[2]  Philippe Villedieu,et al.  Critical impact velocity for ice fragmentation , 2012 .

[3]  B. J. Mason On the melting of hailstones , 1956 .

[4]  J. Walter Strapp,et al.  The Ice Particle Threat to Engines in Flight , 2006 .

[5]  P. Nikrityuk,et al.  Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers , 2012 .

[6]  Masahiko Arakawa,et al.  Size Dependence of Restitution Coefficients of Ice in Relation to Collision Strength , 1998 .

[7]  B. L. Messinger Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed , 1953 .

[8]  R. Rasmussen,et al.  A Wind Tunnel and Theoretical Study of the Melting Behavior of Atmospheric Ice Particles. II: A Theoretical Study for Frozen Drops of Radius < 500 μm , 1982 .

[9]  C. Tropea,et al.  Investigation of the melting behaviour of ice particles in an acoustic levitator , 2014 .

[10]  J. Hallett,et al.  Particle Impact and Breakup in Aircraft Measurement , 2009 .

[11]  Tadas P. Bartkus,et al.  Development of a Coupled Air and Particle Thermal Model for Engine Icing Test Facilities , 2015 .

[12]  Mario Vargas,et al.  Fundamental Ice Crystal Accretion Physics Studies , 2011 .

[13]  O. Levenspiel,et al.  Drag coefficient and terminal velocity of spherical and nonspherical particles , 1989 .

[14]  Robert S. Mazzawy Modeling of Ice Accretion and Shedding In Turbofan Engines With Mixed Phase/Glaciated (Ice Crystal) Conditions , 2007 .

[15]  David Leith,et al.  Drag on Nonspherical Objects , 1987 .

[16]  Peter M. Struk,et al.  Fundamental Study of Mixed-Phase Icing with Application to Ice Crystal Accretion in Aircraft Jet Engines , 2012 .

[17]  James D. MacLeod,et al.  Development and Commissioning of a Linear Compressor Cascade Rig for Ice Crystal Research , 2011 .

[18]  Joseph P. Veres,et al.  Mixed Phase Modeling in GlennICE with Application to Engine Icing , 2010 .

[20]  Dan Fuleki,et al.  Understanding Ice Crystal Accretion and Shedding Phenomenon in Jet Engines Using a Rig Test , 2011 .

[21]  Philippe Villedieu,et al.  HAIC - High Altitude Ice Crystals , 2013 .

[22]  Peter M. Render,et al.  Impact characteristics of hailstones simulating ingestion by turbofan aeroengines , 1996 .

[23]  R. Othman,et al.  Experimental investigation of the kinematics of post-impact ice fragments , 2011 .

[24]  Kamel Al-Khalil,et al.  Mixed-Phase Icing Simulation and Testing at the Cox Icing Wind Tunnel , 2003 .

[25]  W. Habashi,et al.  Multiphase Approach Toward Simulating Ice Crystal Ingestion in Jet Engines , 2011 .

[26]  Peter M. Render,et al.  Experimental studies into hail impact characteristics , 1995 .

[27]  Gary H. Ganser,et al.  A rational approach to drag prediction of spherical and nonspherical particles , 1993 .

[28]  Rios Pabon,et al.  Ice crystal ingestion by turbofans , 2012 .

[29]  J. D. MacLeod Development of Ice Crystal Facilities for Engine Testing , 2007 .

[30]  Andreas Hölzer,et al.  New simple correlation formula for the drag coefficient of non-spherical particles , 2008 .

[31]  C. Kleinstreuer,et al.  Computational analysis of convection heat transfer to non-spherical particles , 1995 .