Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics.

Hydrodynamic behavior at the vicinity of a confining wall is closely related to the friction properties of the liquid/solid interface. Here we consider, using molecular dynamics simulations, the electric contribution to friction for charged surfaces, and the induced modification of the hydrodynamic boundary condition at the confining boundary. The consequences of liquid slippage for electrokinetic phenomena, through the coupling between hydrodynamics and electrostatics within the electric double layer, are explored. Strong amplification of electro-osmotic effects is revealed, and the nontrivial effect of surface charge is discussed. This work allows us to reconsider existing experimental data, concerning zeta potentials of hydrophobic surfaces and suggests the possibility to generate "giant" electro-osmotic and electrophoretic effects, with direct applications in microfluidics.

[1]  R. Netz,et al.  Electro-osmosis at inhomogeneous charged surfaces: hydrodynamic versus electric friction. , 2006, The Journal of chemical physics.

[2]  R. Netz,et al.  Electroosmosis at inhomogeneous charged surfaces , 2005 .

[3]  Gleb E Yakubov,et al.  Surface roughness and hydrodynamic boundary conditions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  C. Ybert,et al.  Probing the nanohydrodynamics at liquid-solid interfaces using thermal motion. , 2005, Physical review letters.

[5]  L. Léger,et al.  Friction and Slip at Simple Fluid-Solid Interfaces: The Roles of the Molecular Shape and the Solid-Liquid Interaction , 2005 .

[6]  J. Dufrêche,et al.  Molecular hydrodynamics for electro-osmosis in clays: from Kubo to Smoluchowski , 2005 .

[7]  Patrick Tabeling,et al.  Direct measurement of the apparent slip length. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  E. Charlaix,et al.  Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. , 2005, Physical review letters.

[9]  E. Trizac,et al.  Hydrodynamics within the electric double layer on slipping surfaces. , 2004, Physical review letters.

[10]  R. Netz Water and ions at interfaces , 2004 .

[11]  N. Aluru,et al.  Charge inversion and flow reversal in a nanochannel electro-osmotic flow. , 2004, Physical review letters.

[12]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[13]  Y. Levin,et al.  On the fluid?fluid phase separation in charged-stabilized colloidal suspensions , 2003, cond-mat/0401175.

[14]  R. Netz Electrofriction and dynamic stern layers at planar charged surfaces. , 2003, Physical review letters.

[15]  M. Grunze,et al.  Hydroxide ion adsorption on self-assembled monolayers. , 2003, Journal of the American Chemical Society.

[16]  M. Bazant,et al.  Induced-charge electrokinetic phenomena: theory and microfluidic applications. , 2003, Physical review letters.

[17]  Steve Granick,et al.  Slippery questions about complex fluids flowing past solids , 2003, Nature materials.

[18]  Y. Levin Electrostatic correlations: from plasma to biology , 2002, cond-mat/0207086.

[19]  J. Joanny,et al.  Adsorption of polyampholytes on charged surfaces , 2002, The European physical journal. E, Soft matter.

[20]  J. Ralston,et al.  Electrokinetic properties of methylated quartz capillaries. , 2002, Advances in colloid and interface science.

[21]  W. Knoll,et al.  Dissociation of Surface Functional Groups and Preferential Adsorption of Ions on Self-Assembled Monolayers Assessed by Streaming Potential and Streaming Current Measurements , 2001 .

[22]  Trizac Effective interactions between like-charged macromolecules , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  R. Schasfoort,et al.  Field-effect flow control for microfabricated fluidic networks , 1999, Science.

[24]  Lydéric Bocquet,et al.  Large Slip Effect at a Nonwetting Fluid-Solid Interface , 1999 .

[25]  J. Barrat,et al.  Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface , 1998, cond-mat/9812218.

[26]  A. Bard,et al.  Use of Atomic Force Microscopy for the Study of Surface Acid-Base Properties of Carboxylic Acid-Terminated Self-Assembled Monolayers , 1997 .

[27]  L. Bocquet,et al.  Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[29]  Peter J. Scales,et al.  Electrokinetics of the silica-solution interface: a flat plate streaming potential study , 1992 .

[30]  Johannes Lyklema,et al.  Fundamentals of Interface and Colloid Science , 1991 .

[31]  Liu,et al.  Boundary condition for fluid flow: Curved or rough surfaces. , 1990, Physical review letters.

[32]  R. J. Hunter Foundations of Colloid Science , 1987 .

[33]  R. W. O'Brien The solution of the electrokinetic equations for colloidal particles with thin double layers , 1983 .

[34]  Gérard Weisbuch,et al.  Une longueur d'chelle pour les interfaces charges , 1983 .

[35]  E. Chibowski,et al.  A relationship between the zeta potential and surface free energy changes of the sulfur/n-heptane—water system , 1978 .

[36]  J. Laskowski,et al.  The hydrophilic—hydrophobic transition on silica , 1969 .

[37]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[38]  H. C. Parreira,et al.  Streaming Potential Measurements on Paraffin Wax , 1961 .

[39]  J. F. Mansergh,et al.  Physique , 1903, The Indian medical gazette.

[40]  Faraday Discuss , 1985 .

[41]  R. J. Hunter,et al.  Zeta Potential in Colloid Science , 1981 .

[42]  Lee R. White,et al.  Electrophoretic mobility of a spherical colloidal particle , 1978 .

[43]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[44]  O. Frölich Handbuch der Elektricität und des Magnetismus , 1887 .