Discrete-Event Simulation: A First Course

1. Models 1.1. Introduction 1.2. A Single-Server Queue 1.3. A Simple Inventory System 2. Random Number Generation 2.1. Lehmer Random Number Generation: Introduction 2.2. Lehmer Random Number Generation: Implementation 2.3. Monte Carlo Simulation 2.4. Monte Carlo Simulation Examples 3. Discrete-Event Simulation 3.1. Discrete-Event Simulation 3.2. Multi-Stream Lehmer Random Number Generation 3.3. Discrete-Event Simulation Models 4. Statistics 4.1. Sample Statistics 4.2. Discrete-Data Histograms 4.3. Continuous-Data Histograms 4.4. Correlation 5. Next-Event Simulation 5.1. Next-Event Simulation 5.2. Next-Event Simulation Examples 5.3. Event List Management 6. Discrete Random Variables 6.1. Discrete Random Variables 6.2. Generating Discrete Random Variables 6.3. Discrete Random Variable Applications 6.4. Discrete Random Variable Models 6.5. Random Sampling 7. Continuous Random Variables 7.1. Continuous Random Variables 7.2. Generating Continuous Random Variables 7.3. Continuous Random Variable Applications 7.4. Continuous Random Variable Models 7.5. Nonstationary Poisson Processes 7.6. Acceptance-Rejection 8. Input Modeling 8.1. Error in Discrete-Event Simulation 8.2. Modeling Stationary Processes 8.3. Modeling Nonstationary Processes 9. Output Analysis 9.1. Interval Estimation 9.2. Monte Carlo Estimation 9.3. Finite-Horizon and Infinite-Horizon Statistics 9.4. Batch Means 9.5. Steady-State Single-Server Service Node Statistics 10. Projects 10.1. Empirical Tests of Randomness 10.2. Birth-Death Processes 10.3. Finite-State Markov Chains 10.4. A Network of Single-Server Service Nodes Appendices: A. Simulation Languages B. Integer Arithmetic C. Parameter Estimation Summary D. Random Variate Models E. Random Variate Generators F. Correlation and Independence References

[1]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[2]  Douglas W. Jones,et al.  An empirical comparison of priority-queue and event-set implementations , 1986, CACM.

[3]  M. J. Wichura The percentage points of the normal distribution , 1988 .

[4]  D. R. Heath-Brown,et al.  An Introduction to the Theory of Numbers, Sixth Edition , 2008 .

[5]  Pierre L'Ecuyer,et al.  An Object-Oriented Random-Number Package with Many Long Streams and Substreams , 2002, Oper. Res..

[6]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[7]  Averill M. Law,et al.  The Transient Behavior of the M/M/s Queue, with Implications for Steady-State Simulation , 1985, Oper. Res..

[8]  B. Welford Note on a Method for Calculating Corrected Sums of Squares and Products , 1962 .

[9]  J. Lawless Statistical Models and Methods for Lifetime Data Second Edition , 2002 .

[10]  R. A. Kilgore Simulation Web services with .Net technologies , 2002, Proceedings of the Winter Simulation Conference.

[11]  A. I. McLeod,et al.  A Convenient Algorithm for Drawing a Simple Random Sample , 1983 .

[12]  Pandu R. Tadikamalla,et al.  Applied Simulation Modeling , 2003 .

[13]  P. A. W. Lewis,et al.  A Pseudo-Random Number Generator for the System/360 , 1969, IBM Syst. J..

[14]  Barry L. Nelson,et al.  Input modeling tools for complex problems , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[15]  William H. Press,et al.  Numerical recipes in C , 2002 .

[16]  T. A. Bray,et al.  A Convenient Method for Generating Normal Variables , 1964 .

[17]  Chris P. Tsokos,et al.  Parameter estimation of the Weibull probability distribution , 1994 .

[18]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[19]  J. Bert Keats,et al.  Statistical Methods for Reliability Data , 1999 .

[20]  M. Wand Data-Based Choice of Histogram Bin Width , 1997 .

[21]  James R. Wilson,et al.  Using Univariate Bezier Distributions to Model Simulation Input Processes , 1996, Proceedings of 1993 Winter Simulation Conference - (WSC '93).

[22]  William S. Jewell,et al.  A Simple Proof of: L = λW , 1967, Oper. Res..

[23]  L. Leemis,et al.  Nonparametric Estimation of the Cumulative Intensity Function for a Nonhomogeneous Poisson Process from Overlapping Realizations , 2000 .

[24]  G. Shedler,et al.  Simulation of Nonhomogeneous Poisson Processes by Thinning , 1979 .

[25]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[26]  Stephen D. Roberts,et al.  A time-varying Poisson arrival process generator , 1984 .

[27]  Jeffrey Scott Vitter,et al.  Faster methods for random sampling , 1984, CACM.

[28]  Albert Nijenhuis,et al.  Combinatorial Algorithms for Computers and Calculators , 1978 .

[29]  B. Nelson,et al.  A perspective on variance reduction in dynamic simulation experiments , 1987 .

[30]  B. Marx The Visual Display of Quantitative Information , 1985 .

[31]  A. Alan B. Pritsker,et al.  Introduction to simulation and SLAM II , 1979 .

[32]  Asit P. Basu,et al.  Statistical Methods for the Reliability of Repairable Systems , 2000 .

[33]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[34]  Melba M. Crawford,et al.  Modeling and simulation of a nonhomogeneous poisson process having cyclic behavior , 1991 .

[35]  Diane P. Bischak,et al.  Object-oriented simulation , 1991, 1991 Winter Simulation Conference Proceedings..

[36]  S. Kunte,et al.  Statistical computing , 1999 .

[37]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[38]  Randall P. Sadowski,et al.  Introduction to Simulation Using Siman , 1990 .

[39]  J. Neter,et al.  Applied Linear Regression Models , 1983 .

[40]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[41]  Robert B. Cooper,et al.  Queueing systems, volume II: computer applications : By Leonard Kleinrock. Wiley-Interscience, New York, 1976, xx + 549 pp. , 1977 .

[42]  W. Nelson Statistical Methods for Reliability Data , 1998 .

[43]  Richard E. Nance,et al.  A history of discrete event simulation programming languages , 1993, HOPL-II.

[44]  Thomas J. Schriber How Discrete-Event Simulation Software Works , 1995, EUROSIM.

[45]  J. D. Beasley,et al.  Algorithm AS 111: The Percentage Points of the Normal Distribution , 1977 .

[46]  James R. Wilson,et al.  An Automated Multiresolution Procedure for Modeling Complex Arrival Processes , 2006, INFORMS J. Comput..

[47]  Wushow Chou,et al.  Queueing Systems, Volume II: Computer Applications - Leonard Kleinrock , 1977, IEEE Transactions on Communications.

[48]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Herbert S. Wilf,et al.  Combinatorial Algorithms: An Update , 1987 .

[50]  Bruce W. Schmeiser Some myths and common errors in simulation experiments , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[51]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[52]  John S. Oakland Simulation Methodology for Statisticians, Operations Analysts and Engineers, Volume 1 , 1990 .

[53]  Lee W. Schruben,et al.  Some consequences of estimating parameters for the M/M/1 queue , 1982, Oper. Res. Lett..

[54]  Bruce W. Schmeiser,et al.  Batch Size Effects in the Analysis of Simulation Output , 1982, Oper. Res..

[55]  C. V. Eynden Elementary Number Theory , 1987 .

[56]  Edward J. Dudewicz,et al.  Modern Statistical Systems and Gpss Simulation: The First Course , 1990 .

[57]  Lee W. Schruben,et al.  Detecting Initialization Bias in Simulation Output , 1982, Oper. Res..

[58]  James R. Wilson,et al.  Least squares estimation of nonhomogeneous poisson processes , 2000 .

[59]  Leonard Kleinrock,et al.  Queueing Systems: Volume I-Theory , 1975 .