The prognostic role of a gene signature from tumorigenic breast-cancer cells.

BACKGROUND Breast cancers contain a minority population of cancer cells characterized by CD44 expression but low or undetectable levels of CD24 (CD44+CD24-/low) that have higher tumorigenic capacity than other subtypes of cancer cells. METHODS We compared the gene-expression profile of CD44+CD24-/low tumorigenic breast-cancer cells with that of normal breast epithelium. Differentially expressed genes were used to generate a 186-gene "invasiveness" gene signature (IGS), which was evaluated for its association with overall survival and metastasis-free survival in patients with breast cancer or other types of cancer. RESULTS There was a significant association between the IGS and both overall and metastasis-free survival (P<0.001, for both) in patients with breast cancer, which was independent of established clinical and pathological variables. When combined with the prognostic criteria of the National Institutes of Health, the IGS was used to stratify patients with high-risk early breast cancer into prognostic categories (good or poor); among patients with a good prognosis, the 10-year rate of metastasis-free survival was 81%, and among those with a poor prognosis, it was 57%. The IGS was also associated with the prognosis in medulloblastoma (P=0.004), lung cancer (P=0.03), and prostate cancer (P=0.01). The prognostic power of the IGS was increased when combined with the wound-response (WR) signature. CONCLUSIONS The IGS is strongly associated with metastasis-free survival and overall survival for four different types of tumors. This genetic signature of tumorigenic breast-cancer cells was even more strongly associated with clinical outcomes when combined with the WR signature in breast cancer.

[1]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[2]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[5]  Van,et al.  A gene-expression signature as a predictor of survival in breast cancer. , 2002, The New England journal of medicine.

[6]  S. Morrison,et al.  Prospective identification of tumorigenic breast cancer cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  I. Fidler,et al.  The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited , 2003, Nature Reviews Cancer.

[8]  Ash A. Alizadeh,et al.  Gene Expression Signature of Fibroblast Serum Response Predicts Human Cancer Progression: Similarities between Tumors and Wounds , 2004, PLoS biology.

[9]  M. Cronin,et al.  A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. , 2004, The New England journal of medicine.

[10]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[11]  Satoru Miyano,et al.  Open source clustering software , 2004 .

[12]  R. Gelber,et al.  Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. , 2005, Annals of oncology : official journal of the European Society for Medical Oncology.

[13]  Howard Y. Chang,et al.  Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Glinsky,et al.  Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. , 2005, The Journal of clinical investigation.

[15]  J. Foekens,et al.  Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer , 2005, The Lancet.

[16]  Zang Ai-hua,et al.  Stem Cells,Cancer and Cancer Stem Cells , 2005 .

[17]  A. Nobel,et al.  Concordance among Gene-Expression – Based Predictors for Breast Cancer , 2011 .