Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system

We study the Neumann initial-boundary value problem for the fully parabolic Keller-Segel system u_t=\Delta u - \nabla \cdot (u\nabla v), \qquad x\in\Omega, \ t>0, [1mm] v_t=\Delta v-v+u, \qquad x\in\Omega, \ t>0, where $\Omega$ is a ball in ${\mathbb{R}}^n$ with $n\ge 3$. It is proved that for any prescribed $m>0$ there exist radially symmetric positive initial data $(u_0,v_0) \in C^0(\bar\Omega) \times W^{1,\infty}(\Omega)$ with $\int_\Omega u_0=m$ such that the corresponding solution blows up in finite time. Moreover, by providing an essentially explicit blow-up criterion it is shown that within the space of all radial functions, the set of such blow-up enforcing initial data indeed is large in an appropriate sense; in particular, this set is dense with respect to the topology of $L^p(\Omega) \times W^{1,2}(\Omega)$ for any $p \in (1,\frac{2n}{n+2})$.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Dirk Horstmann,et al.  Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.

[3]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[4]  Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski–Poisson system , 2008, 0810.3367.

[5]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[6]  V. Nanjundiah,et al.  Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.

[7]  Benoit Perthame,et al.  Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces , 2008, Math. Comput. Model..

[8]  T. Senba,et al.  A quasi-linear parabolic system of chemotaxis , 2006 .

[9]  Pavol Quittner,et al.  Superlinear Parabolic Problems , 2007, Birkhäuser Advanced Texts Basler Lehrbücher.

[10]  Howard A. Levine,et al.  The Role of Critical Exponents in Blowup Theorems , 1990, SIAM Rev..

[11]  Miguel A. Herrero,et al.  Finite-time aggregation into a single point in a reaction - diffusion system , 1997 .

[12]  H. Kozono,et al.  Global strong solution to the semi-linear Keller-Segel system of parabolic-parabolic type with small data in scale invariant spaces , 2009 .

[13]  Michael Winkler,et al.  Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .

[14]  Philippe Laurenccot,et al.  Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system , 2008, 0810.3369.

[15]  Piotr Biler,et al.  Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis , 2009, Journal of mathematical biology.

[16]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[17]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[18]  Michael Winkler,et al.  Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect , 2010 .

[19]  Toshitaka Nagai,et al.  Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains , 2001 .

[20]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[21]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[22]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[23]  Philippe Laurencçot,et al.  Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system , 2009, 0902.3378.

[24]  Zuzanna Szymańska,et al.  On the global existence of solutions to an aggregation model , 2008 .

[25]  Youshan Tao,et al.  Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity , 2011, 1106.5345.

[26]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[27]  Atsushi Yagi,et al.  NORM BEHAVIOR OF SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS , 1997 .

[28]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[29]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[30]  Dariusz Wrzosek,et al.  Long-time behaviour of solutions to a chemotaxis model with volume-filling effect , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[31]  J. Carrillo,et al.  Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions , 2008, 0801.2310.

[32]  Toshitaka Nagai BEHAVIOR OF SOLUTIONS TO A PARABOLIC-ELLIPTIC SYSTEM MODELLING CHEMOTAXIS , 2000 .

[33]  R. Kowalczyk,et al.  Preventing blow-up in a chemotaxis model , 2005 .

[34]  Michael Winkler,et al.  Does a ‘volume‐filling effect’ always prevent chemotactic collapse? , 2010 .