Computing the effective action with the functional renormalization group

The “exact” or “functional” renormalization group equation describes the renormalization group flow of the effective average action $$\Gamma _k$$Γk. The ordinary effective action $$\Gamma _0$$Γ0 can be obtained by integrating the flow equation from an ultraviolet scale $$k=\Lambda $$k=Λ down to $$k=0$$k=0. We give several examples of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization of QED and of Yang–Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity.

[1]  Daniel F. Litim Critical exponents from optimised renormalisation group flows , 2002 .

[2]  Donoghue,et al.  General relativity as an effective field theory: The leading quantum corrections. , 1994, Physical review. D, Particles and fields.

[3]  W. Heisenberg,et al.  Consequences of Dirac's theory of positrons , 2006 .

[4]  Kamenshchik,et al.  Renormalization group for nonrenormalizable theories: Einstein gravity with a scalar field. , 1993, Physical review. D, Particles and fields.

[5]  H. Gies,et al.  Renormalization flow of QED. , 2004, Physical review letters.

[6]  Holger Gies Running coupling in Yang-Mills theory: A flow equation study , 2002 .

[7]  Bertrand Delamotte,et al.  An Introduction to the Nonperturbative Renormalization Group , 2007, cond-mat/0702365.

[8]  Ivan G. Avramidi The covariant technique for the calculation of the heat kernel asymptotic expansion , 1990 .

[9]  D. Litim Fixed points of quantum gravity and the renormalisation group , 2008, 0810.3675.

[10]  I. Khriplovich,et al.  Quantum long-range interactions in general relativity , 2004, gr-qc/0402018.

[11]  M. Fabbrichesi,et al.  Asymptotic safety and the gaugedSU(N)nonlinearσmodel , 2010, 1010.0912.

[12]  L. Brown,et al.  Symmetric space scalar field theory , 1982 .

[13]  G. Papadopoulos,et al.  The background field method and the non-linear σ-model , 1988 .

[14]  A. Wipf,et al.  On the functional renormalization group for the scalar field on curved background with non-minimal interaction , 2015, 1503.00874.

[15]  T. Morris On Truncations of the Exact Renormalization Group , 1994, hep-th/9405190.

[16]  A. Barvinsky,et al.  Beyond the Schwinger-DeWitt technique: Converting loops into trees and in-in currents , 1987 .

[17]  Elements of the Continuous Renormalization Group , 1998, hep-th/9802039.

[18]  A. Codello,et al.  Low energy quantum gravity from the effective average action , 2010, 1006.3808.

[19]  A. Codello Large N quantum gravity , 2011, 1108.1908.

[20]  A. Barvinsky,et al.  Covariant perturbation theory (II). Second order in the curvature. General algorithms , 1990 .

[21]  I. Avramidi The nonlocal structure of the one-loop effective action via partial summation of the asymptotic expansion , 1990 .

[22]  Jan M. Pawlowski,et al.  Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory , 2006, 0903.2193.

[23]  E. A. Uehling Polarization effects in the positron theory , 1935 .

[24]  A. Houghton,et al.  Renormalization group equation for critical phenomena , 1973 .

[25]  A. Kamenshchik,et al.  One-loop divergences for gravity nonminimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results , 2011, 1101.5047.

[26]  Heinrich Leutwyler,et al.  Chiral perturbation theory to one loop , 1984 .

[27]  U. Ellwanger,et al.  The heavy quark potential from Wilson's exact renormalization group , 1996, hep-ph/9606468.

[28]  M. Fabbrichesi,et al.  Fermions and Goldstone bosons in an asymptotically safe model , 2011, 1105.1968.

[29]  J. Pawlowski,et al.  Confinement from correlation functions , 2013, 1301.4163.

[30]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[31]  A. Wipf,et al.  Functional renormalization group of the nonlinear sigma model and theO(N)universality class , 2012, 1207.4499.

[32]  Renormalization flow of Yang-Mills propagators , 2004, hep-ph/0408089.

[33]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[34]  Jan M. Pawlowski,et al.  On the infrared behavior of Landau gauge Yang-Mills theory , 2008, 0810.1987.

[35]  L. Modesto,et al.  Universally finite gravitational and gauge theories , 2015, 1503.00261.

[36]  Donoghue,et al.  Leading quantum correction to the Newtonian potential. , 1993, Physical review letters.

[37]  A. R. Pietrykowski Interacting scalar fields in the context of effective quantum gravity , 2012, 1210.0507.

[38]  P. Ruiz-Lapuente,et al.  Variable cosmological constant as a Planck scale effect , 2003, astro-ph/0303306.

[39]  C. Pagani,et al.  The renormalization group and Weyl invariance , 2012, 1210.3284.

[40]  Lorenz von Smekal,et al.  INFRARED BEHAVIOR OF GLUON AND GHOST PROPAGATORS IN LANDAU GAUGE QCD , 1997 .

[41]  M. Fabbrichesi,et al.  Electroweak S and T parameters from a fixed point condition. , 2011, Physical review letters.

[42]  I. Shapiro,et al.  On the possible running of the cosmological “constant” , 2009, 0910.4925.

[43]  Roberto Percacci,et al.  Renormalization group flow in scalar-tensor theories: I , 2009, 0911.0386.

[44]  O. Zanusso,et al.  On the non-local heat kernel expansion , 2012, 1203.2034.

[45]  T. Morris,et al.  Solutions to the reconstruction problem in asymptotic safety , 2015, 1507.08657.

[46]  Martin Reuter,et al.  Bare action and regularized functional integral of asymptotically safe quantum gravity , 2008, 0811.3888.

[47]  O. Zanusso,et al.  One loop beta functions and fixed points in higher derivative sigma models , 2009, 0910.0851.

[48]  Quantum gravitational corrections to the nonrelativistic scattering potential of two masses , 2003 .

[49]  A. Codello,et al.  Polyakov effective action from functional renormalization group equation , 2010, 1004.2171.

[50]  Running G and Lambda at low energies from physics at M(X): Possible cosmological and astrophysical implications , 2004, hep-ph/0410095.

[51]  C. Bervillier,et al.  Exact renormalization group equations. An Introductory review , 2000 .

[52]  A. Tonero,et al.  Renormalization group improved computation of correlation functions in theories with nontrivial phase diagram , 2015, 1504.00225.

[53]  Reinhard Alkofer,et al.  The infrared behaviour of QCD Green's functions ☆: Confinement, dynamical symmetry breaking, and hadrons as relativistic bound states , 2000 .

[54]  Daniel F Litim,et al.  Infrared behavior and fixed points in Landau-gauge QCD. , 2004, Physical review letters.

[55]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[56]  Tim R. Morris Derivative expansion of the exact renormalization group , 1994 .

[57]  R. Percacci,et al.  Fixed points of nonlinear sigma models in d > 2 , 2008, 0810.0715.

[58]  Christoph Rahmede,et al.  Renormalization group flow in scalar-tensor theories: II , 2009, 0911.0394.

[59]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[60]  Peter Hasenfratz,et al.  Renormalization group study of scalar field theories , 1986 .

[61]  P. Ruiz-Lapuente,et al.  Testing the running of the cosmological constant with type Ia supernovae at high z , 2003, hep-ph/0311171.

[62]  L. Modesto,et al.  Super-renormalizable and finite gravitational theories , 2014, 1407.8036.

[63]  A. Pich Effective Field Theory , 1998, hep-ph/9806303.

[64]  D. Freedman,et al.  The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model , 1981 .

[65]  J. Honerkamp Chiral multi-loops , 1972 .

[66]  W. Heisenberg,et al.  Folgerungen aus der Diracschen Theorie des Positrons , 1936 .

[67]  Martin Reuter,et al.  Effective average action for gauge theories and exact evolution equations , 1994 .

[68]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .