Computing the effective action with the functional renormalization group
暂无分享,去创建一个
Roberto Percacci | R. Percacci | Alessandro Codello | Lesław Rachwał | Alberto Tonero | A. Tonero | A. Codello | L. Rachwał
[1] Daniel F. Litim. Critical exponents from optimised renormalisation group flows , 2002 .
[2] Donoghue,et al. General relativity as an effective field theory: The leading quantum corrections. , 1994, Physical review. D, Particles and fields.
[3] W. Heisenberg,et al. Consequences of Dirac's theory of positrons , 2006 .
[4] Kamenshchik,et al. Renormalization group for nonrenormalizable theories: Einstein gravity with a scalar field. , 1993, Physical review. D, Particles and fields.
[5] H. Gies,et al. Renormalization flow of QED. , 2004, Physical review letters.
[6] Holger Gies. Running coupling in Yang-Mills theory: A flow equation study , 2002 .
[7] Bertrand Delamotte,et al. An Introduction to the Nonperturbative Renormalization Group , 2007, cond-mat/0702365.
[8] Ivan G. Avramidi. The covariant technique for the calculation of the heat kernel asymptotic expansion , 1990 .
[9] D. Litim. Fixed points of quantum gravity and the renormalisation group , 2008, 0810.3675.
[10] I. Khriplovich,et al. Quantum long-range interactions in general relativity , 2004, gr-qc/0402018.
[11] M. Fabbrichesi,et al. Asymptotic safety and the gaugedSU(N)nonlinearσmodel , 2010, 1010.0912.
[12] L. Brown,et al. Symmetric space scalar field theory , 1982 .
[13] G. Papadopoulos,et al. The background field method and the non-linear σ-model , 1988 .
[14] A. Wipf,et al. On the functional renormalization group for the scalar field on curved background with non-minimal interaction , 2015, 1503.00874.
[15] T. Morris. On Truncations of the Exact Renormalization Group , 1994, hep-th/9405190.
[16] A. Barvinsky,et al. Beyond the Schwinger-DeWitt technique: Converting loops into trees and in-in currents , 1987 .
[17] Elements of the Continuous Renormalization Group , 1998, hep-th/9802039.
[18] A. Codello,et al. Low energy quantum gravity from the effective average action , 2010, 1006.3808.
[19] A. Codello. Large N quantum gravity , 2011, 1108.1908.
[20] A. Barvinsky,et al. Covariant perturbation theory (II). Second order in the curvature. General algorithms , 1990 .
[21] I. Avramidi. The nonlocal structure of the one-loop effective action via partial summation of the asymptotic expansion , 1990 .
[22] Jan M. Pawlowski,et al. Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory , 2006, 0903.2193.
[23] E. A. Uehling. Polarization effects in the positron theory , 1935 .
[24] A. Houghton,et al. Renormalization group equation for critical phenomena , 1973 .
[25] A. Kamenshchik,et al. One-loop divergences for gravity nonminimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results , 2011, 1101.5047.
[26] Heinrich Leutwyler,et al. Chiral perturbation theory to one loop , 1984 .
[27] U. Ellwanger,et al. The heavy quark potential from Wilson's exact renormalization group , 1996, hep-ph/9606468.
[28] M. Fabbrichesi,et al. Fermions and Goldstone bosons in an asymptotically safe model , 2011, 1105.1968.
[29] J. Pawlowski,et al. Confinement from correlation functions , 2013, 1301.4163.
[30] C. Wetterich,et al. Exact evolution equation for the effective potential , 1993, 1710.05815.
[31] A. Wipf,et al. Functional renormalization group of the nonlinear sigma model and theO(N)universality class , 2012, 1207.4499.
[32] Renormalization flow of Yang-Mills propagators , 2004, hep-ph/0408089.
[33] K. Wilson. The renormalization group: Critical phenomena and the Kondo problem , 1975 .
[34] Jan M. Pawlowski,et al. On the infrared behavior of Landau gauge Yang-Mills theory , 2008, 0810.1987.
[35] L. Modesto,et al. Universally finite gravitational and gauge theories , 2015, 1503.00261.
[36] Donoghue,et al. Leading quantum correction to the Newtonian potential. , 1993, Physical review letters.
[37] A. R. Pietrykowski. Interacting scalar fields in the context of effective quantum gravity , 2012, 1210.0507.
[38] P. Ruiz-Lapuente,et al. Variable cosmological constant as a Planck scale effect , 2003, astro-ph/0303306.
[39] C. Pagani,et al. The renormalization group and Weyl invariance , 2012, 1210.3284.
[40] Lorenz von Smekal,et al. INFRARED BEHAVIOR OF GLUON AND GHOST PROPAGATORS IN LANDAU GAUGE QCD , 1997 .
[41] M. Fabbrichesi,et al. Electroweak S and T parameters from a fixed point condition. , 2011, Physical review letters.
[42] I. Shapiro,et al. On the possible running of the cosmological “constant” , 2009, 0910.4925.
[43] Roberto Percacci,et al. Renormalization group flow in scalar-tensor theories: I , 2009, 0911.0386.
[44] O. Zanusso,et al. On the non-local heat kernel expansion , 2012, 1203.2034.
[45] T. Morris,et al. Solutions to the reconstruction problem in asymptotic safety , 2015, 1507.08657.
[46] Martin Reuter,et al. Bare action and regularized functional integral of asymptotically safe quantum gravity , 2008, 0811.3888.
[47] O. Zanusso,et al. One loop beta functions and fixed points in higher derivative sigma models , 2009, 0910.0851.
[48] Quantum gravitational corrections to the nonrelativistic scattering potential of two masses , 2003 .
[49] A. Codello,et al. Polyakov effective action from functional renormalization group equation , 2010, 1004.2171.
[50] Running G and Lambda at low energies from physics at M(X): Possible cosmological and astrophysical implications , 2004, hep-ph/0410095.
[51] C. Bervillier,et al. Exact renormalization group equations. An Introductory review , 2000 .
[52] A. Tonero,et al. Renormalization group improved computation of correlation functions in theories with nontrivial phase diagram , 2015, 1504.00225.
[53] Reinhard Alkofer,et al. The infrared behaviour of QCD Green's functions ☆: Confinement, dynamical symmetry breaking, and hadrons as relativistic bound states , 2000 .
[54] Daniel F Litim,et al. Infrared behavior and fixed points in Landau-gauge QCD. , 2004, Physical review letters.
[55] Joseph Polchinski,et al. Renormalization and effective lagrangians , 1984 .
[56] Tim R. Morris. Derivative expansion of the exact renormalization group , 1994 .
[57] R. Percacci,et al. Fixed points of nonlinear sigma models in d > 2 , 2008, 0810.0715.
[58] Christoph Rahmede,et al. Renormalization group flow in scalar-tensor theories: II , 2009, 0911.0394.
[59] M. Niedermaier,et al. The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.
[60] Peter Hasenfratz,et al. Renormalization group study of scalar field theories , 1986 .
[61] P. Ruiz-Lapuente,et al. Testing the running of the cosmological constant with type Ia supernovae at high z , 2003, hep-ph/0311171.
[62] L. Modesto,et al. Super-renormalizable and finite gravitational theories , 2014, 1407.8036.
[63] A. Pich. Effective Field Theory , 1998, hep-ph/9806303.
[64] D. Freedman,et al. The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model , 1981 .
[65] J. Honerkamp. Chiral multi-loops , 1972 .
[66] W. Heisenberg,et al. Folgerungen aus der Diracschen Theorie des Positrons , 1936 .
[67] Martin Reuter,et al. Effective average action for gauge theories and exact evolution equations , 1994 .
[68] C. Wetterich,et al. Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .