Genome sequence and description of Corynebacterium ihumii sp. nov.

Corynebacterium ihumii strain GD7T sp. nov. is proposed as the type strain of a new species, which belongs to the family Corynebacteriaceae of the class Actinobacteria. This strain was isolated from the fecal flora of a 62 year-old male patient, as a part of the culturomics study. _Corynebacterium ihumii is a Gram positive, facultativly anaerobic, nonsporulating bacillus. Here, we describe the features of this organism, together with the high quality draft genome sequence, annotation and the comparison with other member of the genus Corynebacteria. C. ihumii genome is 2,232,265 bp long (one chromosome but no plasmid) containing 2,125 protein-coding and 53 RNA genes, including 4 rRNA genes. The whole-genome shotgun sequence of _Corynebacterium ihumii strain GD7T sp. nov has been deposited in EMBL under accession number GCA_000403725.

[1]  G. Garrity,et al.  The Road Map to the Manual , 2015 .

[2]  Aidan C. Parte,et al.  LPSN—list of prokaryotic names with standing in nomenclature , 2013, Nucleic Acids Res..

[3]  C. Robert,et al.  Non-contiguous finished genome sequence and description of Alistipes ihumii sp. nov. , 2012, Standards in genomic sciences.

[4]  C. Robert,et al.  Non-contiguous finished genome sequence and description of Clostridium dakarense sp. nov. , 2013, Standards in genomic sciences.

[5]  C. Robert,et al.  Genome sequence and description of Timonella senegalensis gen. nov., sp. nov., a new member of the suborder Micrococcinae , 2013, Standards in genomic sciences.

[6]  D. Raoult,et al.  Non contiguous-finished genome sequence and description of Dielma fastidiosa gen. nov., sp. nov., a new member of the Family Erysipelotrichaceae , 2013, Standards in genomic sciences.

[7]  D. Raoult,et al.  Non contiguous-finished genome sequence and description of Enorma massiliensis gen. nov., sp. nov., a new member of the Family Coriobacteriaceae , 2013, Standards in genomic sciences.

[8]  D. Raoult,et al.  Non contiguous-finished genome sequence and description of Bacillus massiliosenegalensis sp. nov. , 2013, Standards in genomic sciences.

[9]  C. Robert,et al.  Non contiguous-finished genome sequence and description of Peptoniphilus obesi sp. nov. , 2013, Standards in genomic sciences.

[10]  D. Raoult,et al.  Non contiguous-finished genome sequence and description of Senegalemassilia anaerobia gen. nov., sp. nov. , 2013, Standards in genomic sciences.

[11]  D. Raoult,et al.  Non contiguous-finished genome sequence and description of Alistipes obesi sp. nov , 2013, Standards in genomic sciences.

[12]  C. Robert,et al.  Non contiguous-finished genome sequence and description of Enterobacter massiliensis sp. nov. , 2013, Standards in genomic sciences.

[13]  D. Raoult,et al.  Non contiguous-finished genome sequence and description of Peptoniphilus senegalensis sp. nov. , 2013, Standards in genomic sciences.

[14]  C. Robert,et al.  The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics , 2013, European Journal of Clinical Microbiology & Infectious Diseases.

[15]  C. Robert,et al.  Non contiguous-finished genome sequence and description of Peptoniphilus grossensis sp. nov. , 2012, Standards in genomic sciences.

[16]  D. Raoult,et al.  Non contiguous-finished genome sequence and description of Cellulomonas massiliensis sp. nov. , 2012, Standards in genomic sciences.

[17]  C. Robert,et al.  Non-contiguous finished genome sequence and description of Herbaspirillum massiliense sp. nov. , 2012, Standards in genomic sciences.

[18]  C. Robert,et al.  Non-contiguous finished genome sequence and description of Kurthia massiliensis sp. nov. , 2012, Standards in genomic sciences.

[19]  C. Robert,et al.  Non-contiguous finished genome sequence and description of Brevibacterium senegalense sp. nov. , 2012, Standards in genomic sciences.

[20]  D Raoult,et al.  Microbial culturomics: paradigm shift in the human gut microbiome study. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[21]  D. Raoult,et al.  Genome sequence and description of Aeromicrobium massiliense sp. nov. , 2012, Standards in genomic sciences.

[22]  C. Robert,et al.  Non contiguous-finished genome sequence and description of Peptoniphilus grossensis sp. nov. , 2012, Standards in genomic sciences.

[23]  D. Raoult,et al.  Non-contiguous finished genome sequence and description of Paenibacillus senegalensis sp. nov. , 2012, Standards in genomic sciences.

[24]  D. Raoult,et al.  Non-contiguous finished genome sequence and description of Alistipes timonensis sp. nov. , 2012, Standards in genomic sciences.

[25]  D. Raoult,et al.  Non contiguous-finished genome sequence and description of Bacillus timonensis sp. nov. , 2012, Standards in Genomic Sciences.

[26]  C. Robert,et al.  Non-contiguous finished genome sequence and description of Clostridium senegalense sp. nov. , 2012, Standards in genomic sciences.

[27]  C. Robert,et al.  Genome sequence and description of Alistipes senegalensis sp. nov. , 2012, Standards in genomic sciences.

[28]  D. Raoult,et al.  Non-contiguous finished genome sequence and description of Anaerococcus senegalensis sp. nov. , 2012, Standards in genomic sciences.

[29]  Lynne A. Goodwin,et al.  Complete genome sequence of Paenibacillus sp. strain JDR-2 , 2012, Standards in genomic sciences.

[30]  Radhey S. Gupta,et al.  Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria , 2012, Microbiology and Molecular Reviews.

[31]  Natasha S. Crowcroft,et al.  Diphtheria in the Postepidemic Period, Europe, 2000–2009 , 2012, Emerging infectious diseases.

[32]  W. Wade,et al.  Bergey’s Manual of Systematic Bacteriology , 2012 .

[33]  Alexandre Alves de Souza de Oliveira Dias,et al.  Difteria por Corynebacterium ulcerans: una zoonosis emergente en Brasil y en el mundo , 2011 .

[34]  P. E. Nagao,et al.  Corynebacterium ulcerans diphtheria: an emerging zoonosis in Brazil and worldwide. , 2011, Revista de saude publica.

[35]  David S. Wishart,et al.  PHAST: A Fast Phage Search Tool , 2011, Nucleic Acids Res..

[36]  Sonja J. Prohaska,et al.  Proteinortho: Detection of (Co-)orthologs in large-scale analysis , 2011, BMC Bioinformatics.

[37]  K. Bernard,et al.  Assignment of Brevibacterium stationis (ZoBell and Upham 1944) Breed 1953 to the genus Corynebacterium, as Corynebacterium stationis comb. nov., and emended description of the genus Corynebacterium to include isolates that can alkalinize citrate. , 2010, International journal of systematic and evolutionary microbiology.

[38]  W. Ludwig,et al.  Notes on the characterization of prokaryote strains for taxonomic purposes. , 2010, International journal of systematic and evolutionary microbiology.

[39]  D. Raoult,et al.  Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[40]  E. Stackebrandt,et al.  An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. , 2009, International journal of systematic and evolutionary microbiology.

[41]  Matthew Berriman,et al.  DNAPlotter: circular and linear interactive genome visualization , 2008, Bioinform..

[42]  Chris F. Taylor,et al.  The minimum information about a genome sequence (MIGS) specification , 2008, Nature Biotechnology.

[43]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[44]  E. Stackebrandt Taxonomic parameters revisited : tarnished gold standards , 2006 .

[45]  Ramon Rosselló-Móra,et al.  DNA-DNA Reassociation Methods Applied to Microbial Taxonomy and Their Critical Evaluation , 2006 .

[46]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[47]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[48]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[49]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[50]  David S. Eisenberg,et al.  Finding families for genomic ORFans , 1999, Bioinform..

[51]  E. Stackebrandt,et al.  Proposal for a New Hierarchic Classification System, Actinobacteria classis nov. , 1997 .

[52]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[53]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[54]  M. Collins,et al.  Phylogenetic Evidence for the Transfer of Caseobacter polymorphus (Crombach) to the Genus Corynebacterium , 1989 .

[55]  Lawrence G. Wayne,et al.  International Committee on Systematic Bacteriology: Announcement of the Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics , 1988 .

[56]  P. Sneath,et al.  Approved lists of bacterial names. , 1980, The Medical journal of Australia.

[57]  R. E. Buchanan STUDIES IN THE NOMENCLATURE AND CLASSIFICATION OF THE BACTERIA II. THE PRIMARY SUBDIVISIONS OF THE SCHIZOMYCETES , 1917, Journal of bacteriology.

[58]  Lehmann Karl Bernhard Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik , 1896 .