Granular Neighborhood Function for Self-organizing Map: Clustering and Gene Selection

In the previous chapters various techniques involving granular neural networks for classification, clustering and feature selection in bioinformatics tasks are described.

[1]  Qiang Shen,et al.  New Approaches to Fuzzy-Rough Feature Selection , 2009, IEEE Transactions on Fuzzy Systems.

[2]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[3]  Sankar K. Pal,et al.  Rough Set Based Generalized Fuzzy $C$ -Means Algorithm and Quantitative Indices , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[5]  Richard Jensen,et al.  Unsupervised fuzzy-rough set-based dimensionality reduction , 2013, Inf. Sci..

[6]  Soumitra Dutta,et al.  Fuzzy rough granular neural networks, fuzzy granules, and classification , 2011, Theor. Comput. Sci..

[7]  Pradipta Maji,et al.  Rough-Fuzzy Clustering for Grouping Functionally Similar Genes from Microarray Data , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[8]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.

[9]  Sung-Bae Cho,et al.  Fuzzy-Rough Entropy Measure and Histogram Based Patient Selection for miRNA Ranking in Cancer , 2018, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[10]  C. A. Murthy,et al.  Unsupervised Feature Selection Using Feature Similarity , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[12]  Soumitra Dutta,et al.  Class-dependent rough-fuzzy granular space, dispersion index and classification , 2012, Pattern Recognit..

[13]  Sankar K. Pal,et al.  Fuzzy–Rough Sets for Information Measures and Selection of Relevant Genes From Microarray Data , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Sankar K. Pal,et al.  A Granular Self-Organizing Map for Clustering and Gene Selection in Microarray Data , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[15]  Sankar K. Pal,et al.  Fuzzy rough granular self-organizing map and fuzzy rough entropy , 2012, Theor. Comput. Sci..

[16]  Sankar K. Pal,et al.  Rough-Fuzzy MLP: Modular Evolution, Rule Generation, and Evaluation , 2003, IEEE Trans. Knowl. Data Eng..

[17]  Joseph Seifter,et al.  Studies on analogues of L-cysteine and L-cystine. I. Some structural requirements for inhibiting the incorporation of radioactive L-cystine by leukemic leukocytes. , 1956, Blood.

[18]  S. Pal,et al.  Segmentation of remotely sensed images with fuzzy thresholding, and quantitative evaluation , 2000 .

[19]  John Quackenbush,et al.  Computational genetics: Computational analysis of microarray data , 2001, Nature Reviews Genetics.

[20]  Jill P. Mesirov,et al.  Subclass Mapping: Identifying Common Subtypes in Independent Disease Data Sets , 2007, PloS one.

[21]  Mark A. Hall,et al.  Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning , 1999, ICML.

[22]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Sushmita Mitra,et al.  Evolutionary Rough Feature Selection in Gene Expression Data , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[24]  Sankar K. Pal,et al.  Rough Self Organizing Map , 2004, Applied Intelligence.

[25]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[26]  Yehuda G. Assaraf,et al.  Folate Deprivation Results in the Loss of Breast Cancer Resistance Protein (BCRP/ABCG2) Expression , 2004, Journal of Biological Chemistry.

[27]  Hong Yan,et al.  Convergence condition and efficient implementation of the fuzzy curve-tracing (FCT) algorithm , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[28]  Sankar K. Pal,et al.  Unsupervised feature evaluation: a neuro-fuzzy approach , 2000, IEEE Trans. Neural Networks Learn. Syst..

[29]  Jung-Hsien Chiang,et al.  A Combination of Rough-Based Feature Selection and RBF Neural Network for Classification Using Gene Expression Data , 2008, IEEE Transactions on NanoBioscience.

[30]  E. Lander,et al.  Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[32]  Joaquín Dopazo,et al.  FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes , 2004, Bioinform..