An approach toward TiO2 nanostructure growth with tunable properties: influence of concentration of titanium butoxide in a hydrothermal process

[1]  Y. Ghayeb,et al.  Fabrication and characterization of zinc oxide-decorated titania nanoporous by electrochemical anodizing-chemical bath deposition techniques: visible light active photocatalysts with good stability , 2016, Journal of the Iranian Chemical Society.

[2]  Y. Ghayeb,et al.  Photochemical deposition of platinum on titanium dioxide–tungsten trioxide nanocomposites: an efficient photocatalyst under visible light irradiation , 2016, Journal of Materials Science: Materials in Electronics.

[3]  M. Momeni Fabrication of copper decorated tungsten oxide–titanium oxide nanotubes by photochemical deposition technique and their photocatalytic application under visible light , 2015 .

[4]  Xinliang Zheng,et al.  Visible-light photocatalytic properties of Mo–C codoped anatase TiO2 films prepared by magnetron sputtering , 2015 .

[5]  A. Kazempour,et al.  In-situ manganese doping of TiO2 nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: A good visible-light photocatalyst , 2015 .

[6]  Sébastien R Mouchet,et al.  Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption? , 2015, Physical chemistry chemical physics : PCCP.

[7]  G. Demopoulos,et al.  Growth of Cu2ZnSnS4 Nanocrystallites on TiO2 Nanorod Arrays as Novel Extremely Thin Absorber Solar Cell Structure via the Successive-Ion-Layer-Adsorption-Reaction Method. , 2015, ACS applied materials & interfaces.

[8]  Y. Ghayeb,et al.  Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting , 2015 .

[9]  Y. Ghayeb,et al.  Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst , 2015 .

[10]  Y. Ghayeb,et al.  Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing , 2015 .

[11]  Y. Ghayeb,et al.  Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes , 2015, Journal of Applied Electrochemistry.

[12]  Chang Ming Li,et al.  Light-controlled resistive switching memory of multiferroic BiMnO3 nanowire arrays. , 2015, Physical chemistry chemical physics : PCCP.

[13]  Y. Ghayeb,et al.  Single-step electrochemical anodization for synthesis of hierarchical WO3–TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light , 2015 .

[14]  Y. Ghayeb,et al.  Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process , 2015, Journal of Solid State Electrochemistry.

[15]  Peng Chen,et al.  Room-temperature multiferroic properties of single-crystalline FeWO4 nanowires , 2014 .

[16]  Wenxi Zhao,et al.  Enhanced resistive switching effect upon illumination in self-assembled NiWO4 nano-nests. , 2014, Chemical communications.

[17]  G. He,et al.  Controllable hydrothermal synthesis, optical and photocatalytic properties of TiO 2 nanostructures , 2014 .

[18]  P. Limsuwan,et al.  Synthesis of anatase TiO2 nanotubes derived from a natural leucoxene mineral by the hydrothermal method , 2014 .

[19]  Wei Gao,et al.  TiO2/ZnO nanocomposite, ZnO/ZnO bi-level nanostructure and ZnO nanorod arrays: microstructure and time-affected wettability change in ambient conditions , 2014 .

[20]  Zhaoqi Sun,et al.  An approach toward TiO2 nanostructure growth with tunable properties: Influence of reaction time in a hydrothermal process , 2014 .

[21]  Aiping Chen,et al.  Hydrothermal fabrication of Ni3S2/TiO2 nanotube composite films on Ni anode and application in photoassisted water electrolysis , 2013 .

[22]  B. Yin,et al.  Preparation and surface wettability of TiO2 nanorod films modified with triethoxyoctylsilane , 2013 .

[23]  Tianjin Zhang,et al.  Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer , 2013 .

[24]  Qiuyun Zhang,et al.  Photocatalytic Ozonation of Dimethyl Phthalate over TiO2 Prepared by a Hydrothermal Method , 2010, 2010 4th International Conference on Bioinformatics and Biomedical Engineering.

[25]  Jin-A Jeong,et al.  Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells , 2009 .

[26]  F. Rueda,et al.  Preparation and characterization of sprayed FTO thin films , 2007 .

[27]  A. Gibaud,et al.  An X-ray reflectivity study of evaporation-induced self-assembled titania-based films , 2006 .

[28]  Enric Bertran,et al.  RF sputtering deposition of Ag/ITO coatings at room temperature , 2003 .

[29]  A. Fujishima,et al.  Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces , 1999 .

[30]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[31]  M. Ivanda,et al.  Raman spectroscopy of thermally annealed TiO2 thin films obtained by chemical vapour deposition and the spray method , 1992 .

[32]  C. Howard,et al.  Structural and thermal parameters for rutile and anatase , 1991 .

[33]  Xiaoshuang Chen,et al.  Effects of Electrodeposition Electrolyte Concentration on Microstructure, Optical Properties and Wettability of ZnO Nanorods , 2015 .

[34]  R. Pereiro,et al.  A Possible Growth Mechanism for ZnO-TiO2 Composite Nanostructured Films Prepared by Electrodeposition , 2014 .

[35]  H. M. Otte Measurement of Stacking‐Fault Energies by X‐Ray Diffraction , 1967 .