Highly Stretchable Transistors Using a Microcracked Organic Semiconductor

A. Chortos, J. Lim, J. W. F. To, Dr. M. Vosgueritchian, T. J. Dusseault, Prof. Z. Bao Department of Chemical Engineering Stanford University 381 North-South Mall , Stanford , CA , USA E-mail: zbao@stanford.edu T.-H. Kim, S. Hwang Nano Electronics Laboratory Samsung Advanced Institute of Technology Suwon 443–803 , Korea E-mail: swnano.hwang@samsung.com

[1]  E. Kontou,et al.  Physical and chemical cross-linking effects in polyurethane elastomers , 1990 .

[2]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[3]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[4]  Henning Sirringhaus,et al.  Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents , 2004 .

[5]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Someya,et al.  Bending experiment on pentacene field-effect transistors on plastic films , 2005 .

[7]  M. Boyce,et al.  Stress–strain behavior of thermoplastic polyurethanes , 2005 .

[8]  A. Dodabalapur,et al.  Moisture induced surface polarization in a poly(4-vinyl phenol) dielectric in an organic thin-film transistor , 2005 .

[9]  Sangyoon Lee,et al.  Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance , 2006 .

[10]  Z. Suo,et al.  Metal films on polymer substrates stretched beyond 50 , 2007 .

[11]  Dae Sung Chung,et al.  Bending-stress-driven phase transitions in pentacene thin films for flexible organic field-effect transistors , 2008 .

[12]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[13]  Qingyun Zuo,et al.  Air-stability analysis and improvement of poly(3-hexylthiophene) field-effect transistors , 2009 .

[14]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[15]  Frederik C. Krebs,et al.  Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing , 2009 .

[16]  Stéphanie P. Lacour,et al.  Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates , 2009 .

[17]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[18]  Richard H. Friend,et al.  Mechanically tunable conjugated polymer distributed feedback lasers , 2010 .

[19]  Martin Heeney,et al.  Correlations between mechanical and electrical properties of polythiophenes. , 2010, ACS nano.

[20]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[21]  Lee J. Richter,et al.  Anisotropic Structure and Charge Transport in Highly Strain‐Aligned Regioregular Poly(3‐hexylthiophene) , 2011 .

[22]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[23]  Qibing Pei,et al.  Intrinsically Stretchable Polymer Light‐Emitting Devices Using Carbon Nanotube‐Polymer Composite Electrodes , 2011, Advanced materials.

[24]  Eun Kyung Lee,et al.  Full-colour quantum dot displays fabricated by transfer printing , 2011 .

[25]  Zhenan Bao,et al.  Stretchable, elastic materials and devices for solar energy conversion , 2011 .

[26]  J. Rogers,et al.  Stretchable graphene transistors with printed dielectrics and gate electrodes. , 2011, Nano letters.

[27]  K. Hata,et al.  A stretchable carbon nanotube strain sensor for human-motion detection. , 2011, Nature nanotechnology.

[28]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[29]  Stéphanie P. Lacour,et al.  Silicone substrate with in situ strain relief for stretchable thin-film transistors , 2011 .

[30]  S. Bauer,et al.  An All‐Printed Ferroelectric Active Matrix Sensor Network Based on Only Five Functional Materials Forming a Touchless Control Interface , 2011, Advanced materials.

[31]  T. Yasuda Anisotropic carrier transport properties of stretch‐oriented π‐conjugated polymers in organic field‐effect transistors , 2011 .

[32]  Yonggang Huang,et al.  Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability , 2011, Proceedings of the National Academy of Sciences.

[33]  S. Wagner,et al.  Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity , 2012, Advanced functional materials.

[34]  Adrian M. Ionescu,et al.  Streched organic transistors maintain mobility on flexible substrates , 2012 .

[35]  A. Bonfiglio,et al.  Strain Sensitivity and Transport Properties in Organic Field-Effect Transistors , 2012, IEEE Electron Device Letters.

[36]  S. Bauer,et al.  Materials for stretchable electronics , 2012 .

[37]  Jan Vanfleteren,et al.  Printed circuit board technology inspired stretchable circuits , 2012 .

[38]  Tricia Breen Carmichael,et al.  Stretchable Light‐Emitting Electrochemical Cells Using an Elastomeric Emissive Material , 2012, Advanced materials.

[39]  Zhenan Bao,et al.  Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. , 2012, Accounts of chemical research.

[40]  Piero Cosseddu,et al.  Continuous tuning of the mechanical sensitivity of Pentacene OTFTs on flexible substrates: From strain sensors to deformable transistors , 2013 .

[41]  Zhenan Bao,et al.  Toward high-mobility organic field-effect transistors: Control of molecular packing and large-area fabrication of single-crystal-based devices , 2013 .

[42]  Lain-Jong Li,et al.  Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics , 2013 .

[43]  M. Yun,et al.  Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. , 2013, Nature materials.

[44]  Philipp Gutruf,et al.  Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes , 2013 .