Discontinuous Galerkin time-domain computations of metallic nanostructures.

We apply the three-dimensional Discontinuous-Galerkin Time-Domain method to the investigation of the optical properties of bar- and V-shaped metallic nanostructures on dielectric substrates. A flexible finite element-like mesh together with an expansion into high-order basis functions allows for an accurate resolution of complex geometries and strong field gradients. In turn, this provides accurate results on the optical response of realistic structures. We study in detail the influence of particle size and shape on resonance frequencies as well as on scattering and absorption efficiencies. Beyond a critical size which determines the onset of the quasi-static limit we find significant deviations from the quasi-static theory. Furthermore, we investigate the influence of the excitation by comparing normal illumination and attenuated total internal reflection setups. Finally, we examine the possibility of coherently controlling the local field enhancement of V-structures via chirped pulses.

[1]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[2]  M. Wegener,et al.  Absolute extinction cross section of individual magnetic split-ring resonators , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[3]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[4]  Mark I. Stockman,et al.  Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal , 2008 .

[5]  Magnus Willander,et al.  Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids , 2002 .

[6]  O. Martin,et al.  Engineering the optical response of plasmonic nanoantennas. , 2008, Optics express.

[7]  Giovanni Volpe,et al.  Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. , 2008, Physical review letters.

[8]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[9]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[10]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[11]  Kurt Busch,et al.  A Krylov‐subspace based solver for the linear and nonlinear Maxwell equations , 2007 .

[12]  M. Stockman Ultrafast nanoplasmonics under coherent control , 2008 .

[13]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. , 2008, Physical review letters.

[14]  Shan Zhao,et al.  DSC time-domain solution of Maxwell's equations , 2003 .

[15]  Philippe Guyot-Sionnest,et al.  Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations , 2007 .

[16]  M. Broyer,et al.  Direct measurement of the single-metal-cluster optical absorption. , 2004, Physical review letters.

[17]  T. Klar,et al.  Radiative and nonradiative rates of phosphors attached to gold nanoparticles , 2007 .

[18]  Bernhard Lamprecht,et al.  Spectroscopy of single metallic nanoparticles using total internal reflection microscopy , 2000 .

[19]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .

[20]  Lukas Novotny,et al.  Field Computations of Optical Antennas , 2007 .

[21]  D. Bergman,et al.  Coherent control of femtosecond energy localization in nanosystems. , 2002, Physical review letters.

[22]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[23]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[24]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[25]  Pingwen Zhang,et al.  Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions , 2004 .

[26]  Christian Hafner,et al.  Tuning the resonance frequency of Ag-coated dielectric tips. , 2007, Optics express.

[27]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[28]  G. Schatz,et al.  From Discrete Electronic States to Plasmons: TDDFT Optical Absorption Properties of Agn(n= 10, 20, 35, 56, 84, 120) Tetrahedral Clusters , 2008 .

[29]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[30]  Kurt Busch,et al.  Higher-order time-domain methods for the analysis of nano-photonic systems , 2009 .

[31]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[32]  David J. Bergman,et al.  Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems , 2004 .