The Complexity of Distributions

Complexity theory typically studies the complexity of computing a function $h(x) : \zo^m \to \zo^n$ of a given input $x$. We advocate the study of the complexity of generating the distribution $h(x)$ for uniform $x$, given random bits. Our main results are: (1) Any function $f : \zo^\ell \to \zon$ such that (i) each output bit $f_i$ depends on $o(\log n)$ input bits, and (ii) $\ell \le \log_2 \binom{n}{\alpha n} + n^{0.99}$, has output distribution $f(U)$ at statistical distance $\ge 1 - 1/n^{0.49}$ from the uniform distribution over $n$-bit strings of hamming weight $\alpha n$. We also prove lower bounds for generating $(X,b(X))$ for boolean $b$, and in the case in which each bit $f_i$ is a small-depth decision tree. These lower bounds seem to be the first of their kind, the proofs use anti-concentration results for the sum of random variables. (2) Lower bounds for generating distributions imply succinct data structures lower bounds. As a corollary of (1), we obtain the first lower bound for the membership problem of representing a set $S \subseteq [n]$ of size $\alpha n$, in the case where $1/\alpha$ is a power of $2$: If queries ``$i \in S$?'' are answered by non-adaptively probing $o(\log n)$ bits, then the representation uses $\ge \log_2 \binom{n}{\alpha n} + \Omega(\log n)$ bits. (3) Upper bounds complementing the bounds in (1) for various settings of parameters. (4) Uniform randomized $\acz$ circuits of $\poly(n)$ size and depth $d = O(1)$ with error $\e$ can be simulated by uniform randomized $\acz$ circuits of $\poly(n)$ size and depth $d+1$ with error $\e + o(1)$ using $\le (\log n)^{O( \log \log n)}$ random bits. Previous derandomizations [Ajtai and Wigderson '85, Nisan '91] increase the depth by a constant factor, or else have poor seed length.

[1]  Yuval Ishai,et al.  On the randomness complexity of efficient sampling , 2006, STOC '06.

[2]  Emanuele Viola,et al.  Pseudorandom Bits for Polynomials , 2010, SIAM J. Comput..

[3]  Emanuele Viola,et al.  Cell-probe lower bounds for succinct partial sums , 2010, SODA '10.

[4]  Emanuele Viola,et al.  Fooling Parity Tests with Parity Gates , 2004, APPROX-RANDOM.

[5]  Emanuele Viola Bit-Probe Lower Bounds for Succinct Data Structures , 2012, SIAM J. Comput..

[6]  Mikkel Thorup,et al.  Changing base without losing space , 2010, STOC '10.

[7]  László Babai,et al.  Random Oracles Separate PSPACE from the Polynomial-Time Hierarchy , 1987, Inf. Process. Lett..

[8]  A. Czumaj,et al.  Switching Networks for Generating Random Permutations , 2001 .

[9]  Avi Wigderson,et al.  Deterministic approximate counting of depth-2 circuits , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[10]  Torben Hagerup Fast Parallel Generation of Random Permutations , 1991, ICALP.

[11]  Oded Goldreich,et al.  Computational complexity: a conceptual perspective , 2008, SIGA.

[12]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[13]  Luca Trevisan,et al.  A Note on Approximate Counting for k-DNF , 2004, APPROX-RANDOM.

[14]  Peter Bro Miltersen,et al.  Are bitvectors optimal? , 2000, STOC '00.

[15]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[16]  Emanuele Viola The Complexity of Distributions , 2012, SIAM J. Comput..

[17]  ApplebaumBenny,et al.  Cryptography in $NC^0$ , 2006 .

[18]  GuruswamiVenkatesan,et al.  Unbalanced expanders and randomness extractors from Parvaresh--Vardy codes , 2009 .

[19]  Jeffrey C. Lagarias,et al.  One-Way Functions and Circuit Complexity , 1986, Inf. Comput..

[20]  Avi Wigderson,et al.  Deterministic simulation of probabilistic constant depth circuits , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[21]  Noam Nisan,et al.  Pseudorandom bits for constant depth circuits , 1991, Comb..

[22]  Emanuele Viola Pseudorandom Bits for Constant-Depth Circuits with Few Arbitrary Symmetric Gates , 2007, SIAM J. Comput..

[23]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[24]  Oded Goldreich,et al.  Three XOR-Lemmas - An Exposition , 1995, Electron. Colloquium Comput. Complex..

[25]  Yuval Ishai,et al.  On Pseudorandom Generators with Linear Stretch in NC0 , 2006, APPROX-RANDOM.

[26]  Moni Naor,et al.  Efficient cryptographic schemes provably as secure as subset sum , 1989, 30th Annual Symposium on Foundations of Computer Science.

[27]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[28]  Yuval Ishai,et al.  Cryptography in NC0 , 2004, SIAM J. Comput..

[29]  Shachar Lovett,et al.  Pseudorandom Bit Generators That Fool Modular Sums , 2009, APPROX-RANDOM.

[30]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[31]  Shachar Lovett,et al.  Bounded-Depth Circuits Cannot Sample Good Codes , 2011, Computational Complexity Conference.

[32]  Mark Braverman,et al.  Poly-logarithmic Independence Fools AC^0 Circuits , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[33]  Artur Czumaj,et al.  Delayed path coupling and generating random permutations via distributed stochastic processes , 1999, SODA '99.

[34]  C. SIAMJ. LOW REDUNDANCY IN STATIC DICTIONARIES WITH CONSTANT QUERY TIME , 2001 .

[35]  Devdatt P. Dubhashi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms: Contents , 2009 .

[36]  P. Gopalan,et al.  Fooling Functions of Halfspaces under Product Distributions , 2010, 2010 IEEE 25th Annual Conference on Computational Complexity.

[37]  J. Littlewood,et al.  On the Number of Real Roots of a Random Algebraic Equation , 1938 .

[38]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[39]  Oded Goldreich,et al.  The bit extraction problem or t-resilient functions , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[40]  Shachar Lovett,et al.  Bounded-Depth Circuits Cannot Sample Good Codes , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[41]  Enkatesan G Uruswami Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes , 2008 .

[42]  Rasmus Pagh,et al.  On the cell probe complexity of membership and perfect hashing , 2001, STOC '01.

[43]  Uzi Vishkin,et al.  Converting high probability into nearly-constant time—with applications to parallel hashing , 1991, STOC '91.

[44]  Richard Beigel,et al.  The polynomial method in circuit complexity , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[45]  Elchanan Mossel,et al.  On ε‐biased generators in NC0 , 2006, Random Struct. Algorithms.

[46]  Oded Goldreich,et al.  On the power of two-point based sampling , 1989, J. Complex..

[47]  Oded Goldreich,et al.  On the Implementation of Huge Random Objects , 2003, SIAM J. Comput..

[48]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[49]  Mark Braverman Poly-logarithmic Independence Fools AC0 Circuits , 2009, Computational Complexity Conference.

[50]  Emanuele Viola,et al.  On constructing parallel pseudorandom generators from one-way functions , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[51]  Rocco A. Servedio,et al.  Bounded Independence Fools Halfspaces , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[52]  Emanuele Viola,et al.  Pseudorandom bits for constant depth circuits with few arbitrary symmetric gates , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[53]  Luca Trevisan,et al.  On epsilon-Biased Generators in NC0 , 2003, Electron. Colloquium Comput. Complex..