Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework

In this paper, we designed an end-to-end spectral–spatial residual network (SSRN) that takes raw 3-D cubes as input data without feature engineering for hyperspectral image classification. In this network, the spectral and spatial residual blocks consecutively learn discriminative features from abundant spectral signatures and spatial contexts in hyperspectral imagery (HSI). The proposed SSRN is a supervised deep learning framework that alleviates the declining-accuracy phenomenon of other deep learning models. Specifically, the residual blocks connect every other 3-D convolutional layer through identity mapping, which facilitates the backpropagation of gradients. Furthermore, we impose batch normalization on every convolutional layer to regularize the learning process and improve the classification performance of trained models. Quantitative and qualitative results demonstrate that the SSRN achieved the state-of-the-art HSI classification accuracy in agricultural, rural–urban, and urban data sets: Indian Pines, Kennedy Space Center, and University of Pavia.

[1]  Heesung Kwon,et al.  Contextual deep CNN based hyperspectral classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[2]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Classification of Hyperspectral Data Usi , 2022 .

[3]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[5]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[6]  Liangpei Zhang,et al.  An Adaptive Mean-Shift Analysis Approach for Object Extraction and Classification From Urban Hyperspectral Imagery , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[8]  Xing Zhao,et al.  Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  Bor-Chen Kuo,et al.  Feature Mining for Hyperspectral Image Classification , 2013, Proceedings of the IEEE.

[10]  Jon Atli Benediktsson,et al.  Spectral–Spatial Hyperspectral Image Classification With Edge-Preserving Filtering , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Qi Wang,et al.  Hyperspectral Image Classification via Multitask Joint Sparse Representation and Stepwise MRF Optimization , 2016, IEEE Transactions on Cybernetics.

[12]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[13]  Qian Du,et al.  Hyperspectral Image Classification Using Deep Pixel-Pair Features , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Giles M. Foody,et al.  Feature Selection for Classification of Hyperspectral Data by SVM , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Antonio J. Plaza,et al.  Spectral–Spatial Classification of Hyperspectral Data Using Local and Global Probabilities for Mixed Pixel Characterization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Liangpei Zhang,et al.  Dimensionality Reduction Based on Clonal Selection for Hyperspectral Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[19]  Jon Atli Benediktsson,et al.  SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images , 2010, IEEE Geoscience and Remote Sensing Letters.

[20]  Yicong Zhou,et al.  Region-Kernel-Based Support Vector Machines for Hyperspectral Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Liangpei Zhang,et al.  On Combining Multiple Features for Hyperspectral Remote Sensing Image Classification , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Bo Du,et al.  Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art , 2016, IEEE Geoscience and Remote Sensing Magazine.

[23]  Shihong Du,et al.  Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Bo Du,et al.  Hyperspectral Remote Sensing Image Subpixel Target Detection Based on Supervised Metric Learning , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[26]  Ying Li,et al.  Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network , 2017, Remote. Sens..

[27]  Qi Wang,et al.  Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[28]  Jon Atli Benediktsson,et al.  Generalized Composite Kernel Framework for Hyperspectral Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.