A Native and Adaptive Approach for Linked Stream Data Processing

Sensors, mobile devices and social platforms generate an immense amount of stream data in various formats and schemata. For these areas, the idea of Linked Stream Data is to extend RDF data model to cope with the heterogeneity of data sources and to enable the data integration—not only among themselves, but also with other existing sources. This would enable a vast range of new, near real-time applications. Such applications drive the demand for processing engines that support continuous queries over Linked Stream Data and Linked Data. These engines must not only support the necessary functionalities but also meet the typical low-latency response requirement of stream processing applications. Since unmodified data stream management systems (DSMSs) and triple storages do not provide full functionalities required by Linked Stream Data processing, the rewriting approach could be used to delegate the processing to those systems. However, this suffers from the overhead of data transformation and does not enable full control over the query execution process. The overhead might be prohibitively expensive for the low-latency response requirement and the lack of full control of the execution process restricts optimisations partially and locally in each underlying sub-system. Moreover, the graph-based model of RDF data poses many challenges to designing a physical storage and optimising the processing when mapped to a relation-based data model. Nevertheless, most techniques and algorithms of DSMSs assume stream data being represented in that way. Therefore, algorithms and techniques for DSMSs and triple stores need to be carefully re-engineered to build an efficient and scalable processing engine for Linked Stream Data and Linked Data. In this work, we present an adaptive and native execution framework for Linked Stream Data and Linked Data, called CQELS (Continuous Query Evaluation over Linked Streams). The framework introduces one of the first continuous query languages over Linked Stream Data and Linked Data which is compatible with SPARQL 1.1. The flexibility of our execution framework enables performance gains of several orders of magnitudes over other related systems. For dealing with large RDF datasets and high update throughput RDF streams, we propose an efficient hybrid physical data organisation using novel data structures that support algorithms for efficient incremental evaluation of continuous query operators over Linked Stream Data. The framework also provides several adaptive optimisation algorithms. To demonstrate the advantages of the framework and of the CQELS processing engine in terms of performance, the thesis provides extensive experimental evaluations. The evaluations cover a comprehensive set of parameters that dictate the performance of a continuous queries over Linked Stream Data and Linked Data.

[1]  Joseph M. Hellerstein,et al.  Lifting the Burden of History from Adaptive Query Processing , 2004, VLDB.

[2]  Samuel Madden,et al.  Fjording the stream: an architecture for queries over streaming sensor data , 2002, Proceedings 18th International Conference on Data Engineering.

[3]  Georg Lausen,et al.  An Experimental Comparison of RDF Data Management Approaches in a SPARQL Benchmark Scenario , 2008, SEMWEB.

[4]  Frank van Harmelen,et al.  Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema , 2002, SEMWEB.

[5]  Marcelo Arenas,et al.  Semantics and complexity of SPARQL , 2006, TODS.

[6]  LamportLeslie Time, clocks, and the ordering of events in a distributed system , 1978 .

[7]  Jennifer Widom,et al.  Flexible time management in data stream systems , 2004, PODS.

[8]  Sumit Ganguly,et al.  On Estimating Path Aggregates over Streaming Graphs , 2006, ISAAC.

[9]  Yufei Tao,et al.  Maintaining sliding window skylines on data streams , 2006, IEEE Transactions on Knowledge and Data Engineering.

[10]  Jang-Ping Sheu,et al.  Partitioning and Mapping Nested Loops on Multiprocessor Systems , 1991, IEEE Trans. Parallel Distributed Syst..

[11]  Lukasz Golab,et al.  Update-pattern-aware modeling and processing of continuous queries , 2005, SIGMOD '05.

[12]  Laurent Amsaleg,et al.  Scrambling query plans to cope with unexpected delays , 1996, Fourth International Conference on Parallel and Distributed Information Systems.

[13]  Christian Y. A. Brenninkmeijer,et al.  An Architecture for Query Optimization in Sensor Networks , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[14]  Lukasz Golab,et al.  Sliding Window Query Processing over Data Streams , 2006 .

[15]  Sharma Chakravarthy,et al.  Queueing analysis of relational operators for continuous data streams , 2003, CIKM '03.

[16]  David J. DeWitt,et al.  Tuple Routing Strategies for Distributed Eddies , 2003, VLDB.

[17]  Andrew Heybey,et al.  Tribeca: A System for Managing Large Databases of Network Traffic , 1998, USENIX Annual Technical Conference.

[18]  Qiang Chen,et al.  Aurora : a new model and architecture for data stream management ) , 2006 .

[19]  Donald Kossmann,et al.  The state of the art in distributed query processing , 2000, CSUR.

[20]  Alon Y. Halevy,et al.  An adaptive query execution system for data integration , 1999, SIGMOD '99.

[21]  David J. DeWitt,et al.  Multiprocessor Hash-Based Join Algorithms , 1985, VLDB.

[22]  Jennifer Widom,et al.  STREAM: the stanford stream data manager (demonstration description) , 2003, SIGMOD '03.

[23]  Beng Chin Ooi,et al.  Multiple aggregations over data streams , 2005, SIGMOD '05.

[24]  Bernhard Seeger,et al.  A Cost-Based Approach to Adaptive Resource Management in Data Stream Systems , 2008, IEEE Transactions on Knowledge and Data Engineering.

[25]  Michael Stonebraker,et al.  Optimization of parallel query execution plans in XPRS , 1991, [1991] Proceedings of the First International Conference on Parallel and Distributed Information Systems.

[26]  Ken C. K. Lee,et al.  QUAY: a data stream processing system using chunking , 2004, Proceedings. International Database Engineering and Applications Symposium, 2004. IDEAS '04..

[27]  David J. DeWitt,et al.  Design and evaluation of alternative selection placement strategies in optimizing continuous queries , 2002, Proceedings 18th International Conference on Data Engineering.

[28]  Luc Bouganim,et al.  PicoDBMS: Scaling down database techniques for the smartcard , 2001, The VLDB Journal.

[29]  Dave Reynolds,et al.  Efficient RDF Storage and Retrieval in Jena2 , 2003, SWDB.

[30]  Óscar Corcho,et al.  Linked Stream Data: A Position Paper , 2009, SSN.

[31]  A. N. Wilschut,et al.  Dataflow query execution in a parallel main-memory environment , 1991, [1991] Proceedings of the First International Conference on Parallel and Distributed Information Systems.

[32]  Alberto O. Mendelzon,et al.  Foundations of semantic web databases , 2004, PODS.

[33]  David K. Gifford,et al.  Design Concepts in Programming Languages , 2008 .

[34]  Jennifer Widom,et al.  Adaptive ordering of pipelined stream filters , 2004, SIGMOD '04.

[35]  Wolfgang Lehner,et al.  QStream: Deterministic Querying of Data Streams , 2004, VLDB.

[36]  Thomas Eiter,et al.  Reasoning Web. Semantic Technologies for Advanced Query Answering , 2012, Lecture Notes in Computer Science.

[37]  Shivnath Babu,et al.  Adaptive Query Processing in the Looking Glass , 2005, CIDR.

[38]  Lukasz Golab,et al.  Data Stream Management , 2017, Data Stream Management.

[39]  Miron Livny,et al.  SEQ: A model for sequence databases , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[40]  Walid G. Aref,et al.  Efficient Execution of Sliding-Window Queries Over Data Streams , 2003 .

[41]  Wolfgang Lehner,et al.  Integrated resource management for data stream systems , 2005, SAC '05.

[42]  Dave J. Beckett,et al.  The design and implementation of the redland RDF application framework , 2001, WWW '01.

[43]  Daniel J. Abadi,et al.  Scalable Semantic Web Data Management Using Vertical Partitioning , 2007, VLDB.

[44]  Yin Yang,et al.  HybMig: A Hybrid Approach to Dynamic Plan Migration for Continuous Queries , 2007, IEEE Transactions on Knowledge and Data Engineering.

[45]  Theodore Johnson,et al.  Out-of-order processing: a new architecture for high-performance stream systems , 2008, Proc. VLDB Endow..

[46]  David J. DeWitt,et al.  NiagaraCQ: a scalable continuous query system for Internet databases , 2000, SIGMOD '00.

[47]  JÜRGEN KRÄMER,et al.  Semantics and implementation of continuous sliding window queries over data streams , 2009, TODS.

[48]  Elke A. Rundensteiner,et al.  State-slice: new paradigm of multi-query optimization of window-based stream queries , 2006, VLDB.

[49]  Lukasz Golab,et al.  On Indexing Sliding Windows over Online Data Streams , 2004, EDBT.

[50]  Lukasz Golab,et al.  Issues in data stream management , 2003, SGMD.

[51]  Ying Xing,et al.  The Design of the Borealis Stream Processing Engine , 2005, CIDR.

[52]  Elke A. Rundensteiner,et al.  Dynamic plan migration for continuous queries over data streams , 2004, SIGMOD '04.

[53]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[54]  Andre Bolles,et al.  Streaming SPARQL - Extending SPARQL to Process Data Streams , 2008, ESWC.

[55]  Lukasz Golab,et al.  Processing Sliding Window Multi-Joins in Continuous Queries over Data Streams , 2003, VLDB.

[56]  Friedemann Mattern,et al.  Virtual Time and Global States of Distributed Systems , 2002 .

[57]  Lukasz Golab,et al.  Indexing Time-Evolving Data With Variable Lifetimes , 2006, 18th International Conference on Scientific and Statistical Database Management (SSDBM'06).

[58]  Danh Le Phuoc,et al.  Linked Open Data in Sensor Data Mashups, , 2009, SSN.

[59]  Jennifer Widom,et al.  STREAM: The Stanford Stream Data Manager , 2003, IEEE Data Eng. Bull..

[60]  Yanlei Diao,et al.  High-performance complex event processing over streams , 2006, SIGMOD Conference.

[61]  Theodore Johnson,et al.  Prefilter: predicate pushdown at streaming speeds , 2008, SSPS '08.

[62]  Elisa Bertino,et al.  XJoin index: indexing XML data for efficient handling of branching path expressions , 2004, Proceedings. 20th International Conference on Data Engineering.

[63]  Jennifer Widom,et al.  Resource Sharing in Continuous Sliding-Window Aggregates , 2004, VLDB.

[64]  David Maier,et al.  Exploiting Punctuation Semantics in Continuous Data Streams , 2003, IEEE Trans. Knowl. Data Eng..

[65]  Ciro Cattuto,et al.  Live Social Semantics , 2009, SEMWEB.

[66]  Hongjun Lu,et al.  Stabbing the sky: efficient skyline computation over sliding windows , 2005, 21st International Conference on Data Engineering (ICDE'05).

[67]  David J. DeWitt,et al.  Efficient mid-query re-optimization of sub-optimal query execution plans , 1998, SIGMOD '98.

[68]  Jürgen Umbrich,et al.  YARS2: A Federated Repository for Querying Graph Structured Data from the Web , 2007, ISWC/ASWC.

[69]  Jennifer Widom,et al.  StreaMon: an adaptive engine for stream query processing , 2004, SIGMOD '04.

[70]  Walid G. Aref,et al.  Supporting views in data stream management systems , 2010, TODS.

[71]  Jeffrey F. Naughton,et al.  A non-blocking parallel spatial join algorithm , 2002, Proceedings 18th International Conference on Data Engineering.

[72]  Jianzhong Li,et al.  Dynamic Adjustment of Sliding Windows over Data Streams , 2004, WAIM.

[73]  Carlo Zaniolo,et al.  ATLAS: A Small but Complete SQL Extension for Data Mining and Data Streams , 2003, VLDB.

[74]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.

[75]  Carlo Zaniolo,et al.  Query Languages and Data Models for Database Sequences and Data Streams , 2004, VLDB.

[76]  Bernhard Seeger,et al.  Progressive Merge Join: A Generic and Non-blocking Sort-based Join Algorithm , 2002, VLDB.

[77]  Helen J. Wang,et al.  Online aggregation , 1997, SIGMOD '97.

[78]  Peter A. Boncz,et al.  S3G2: A Scalable Structure-Correlated Social Graph Generator , 2012, TPCTC.

[79]  Sebastian Rudolph,et al.  A Rule-Based Language for Complex Event Processing and Reasoning , 2010, RR.

[80]  Walid G. Aref,et al.  Optimizing In-Order Execution of Continuous Queries over Streamed Sensor Data , 2005, International Conference on Statistical and Scientific Database Management.

[81]  Kirk Pruhs,et al.  Freshness-Aware Scheduling of Continuous Queries in the Dynamic Web , 2005, WebDB.

[82]  Goetz Graefe,et al.  Query evaluation techniques for large databases , 1993, CSUR.

[83]  Kirk Pruhs,et al.  Algorithms and metrics for processing multiple heterogeneous continuous queries , 2008, TODS.

[84]  John Miles Smith,et al.  Optimizing the performance of a relational algebra database interface , 1975, CACM.

[85]  Abraham Bernstein,et al.  Hexastore: sextuple indexing for semantic web data management , 2008, Proc. VLDB Endow..

[86]  Joseph M. Hellerstein,et al.  Using state modules for adaptive query processing , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[87]  Matthew Denny,et al.  Predicate result range caching for continuous queries , 2005, ACM SIGMOD Conference.

[88]  Jennifer Widom,et al.  The CQL continuous query language: semantic foundations and query execution , 2006, The VLDB Journal.

[89]  Stéphane Bressan,et al.  Introduction to Database Systems , 2005 .

[90]  Hector Garcia-Molina,et al.  Wave-indices: indexing evolving databases , 1997, SIGMOD '97.

[91]  Jennifer Widom,et al.  Adaptive caching for continuous queries , 2005, 21st International Conference on Data Engineering (ICDE'05).

[92]  Philippe Bonnet,et al.  Towards Sensor Database Systems , 2001, Mobile Data Management.

[93]  J. S. Saini,et al.  Adaptive Query Processing , 2006 .

[94]  Jianzhong Li,et al.  Processing Sliding Window Join Aggregate in Continuous Queries over Data Streams , 2004, ADBIS.

[95]  Sreenivas Gollapudi,et al.  Estimating PageRank on graph streams , 2008, PODS.

[96]  Norman W. Paton,et al.  Adaptive Query Processing: A Survey , 2002, BNCOD.

[97]  Andy Seaborne,et al.  Clustered TDB: A Clustered Triple Store for Jena , 2008 .

[98]  Alasdair J. G. Gray,et al.  Enabling Ontology-Based Access to Streaming Data Sources , 2010, SEMWEB.

[99]  Bernhard Seeger,et al.  A Temporal Foundation for Continuous Queries over Data Streams , 2005, COMAD.

[100]  Michael Stonebraker,et al.  Operator Scheduling in a Data Stream Manager , 2003, VLDB.

[101]  Calton Pu,et al.  Continual Queries for Internet Scale Event-Driven Information Delivery , 1999, IEEE Trans. Knowl. Data Eng..

[102]  Neil Immerman,et al.  Efficient pattern matching over event streams , 2008, SIGMOD Conference.

[103]  Eugene Inseok Chong,et al.  An Efficient SQL-based RDF Querying Scheme , 2005, VLDB.

[104]  Wolfgang Lehner,et al.  Robust Real-time Query Processing with QStream , 2005, VLDB.

[105]  Hoan Quoc Nguyen-Mau,et al.  A middleware framework for scalable management of linked streams , 2012, J. Web Semant..

[106]  Elke A. Rundensteiner,et al.  Evaluating window joins over punctuated streams , 2004, CIKM '04.

[107]  Jian Yin,et al.  Position: short object lifetimes require a delete-optimized storage system , 2004, EW 11.

[108]  Daniele Braga,et al.  An execution environment for C-SPARQL queries , 2010, EDBT '10.

[109]  Leonid Libkin,et al.  Incremental maintenance of views with duplicates , 1995, SIGMOD '95.

[110]  Amit P. Sheth,et al.  Semantic Sensor Web , 2008, IEEE Internet Computing.

[111]  Jeffrey F. Naughton,et al.  Static optimization of conjunctive queries with sliding windows over infinite streams , 2004, SIGMOD '04.

[112]  Kamin Whitehouse,et al.  Semantic Streams: A Framework for Composable Semantic Interpretation of Sensor Data , 2006, EWSN.

[113]  Claudio Gutiérrez,et al.  Introducing Time into RDF , 2007, IEEE Transactions on Knowledge and Data Engineering.

[114]  Joseph E. Stoy,et al.  Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .

[115]  Jeffrey F. Naughton,et al.  Maximizing the Output Rate of Multi-Way Join Queries over Streaming Information Sources , 2003, VLDB.

[116]  Jennifer Widom,et al.  Adaptive query processing in data stream management systems , 2005 .

[117]  Amol Deshpande,et al.  An initial study of overheads of eddies , 2004, SGMD.

[118]  Janusz R. Getta,et al.  Processing of Continuous Queries over Unlimited Data Streams , 2002, DEXA.

[119]  Peter J. Haas,et al.  Ripple joins for online aggregation , 1999, SIGMOD '99.

[120]  Michael J. Franklin,et al.  Dynamic Pipeline Scheduling for Improving Interactive Query Performance , 2001, VLDB.

[121]  Marcin Zukowski,et al.  MonetDB/X100: Hyper-Pipelining Query Execution , 2005, CIDR.

[122]  Umberto Straccia,et al.  AnQL: SPARQLing Up Annotated RDFS , 2010, SEMWEB.

[123]  Laurent Amsaleg,et al.  Cost-based query scrambling for initial delays , 1998, SIGMOD '98.

[124]  Gerhard Weikum,et al.  The RDF-3X engine for scalable management of RDF data , 2010, The VLDB Journal.

[125]  Danh Le Phuoc,et al.  Live linked open sensor database , 2010, I-SEMANTICS '10.

[126]  Georg Lausen,et al.  SP2Bench: A SPARQL Performance Benchmark , 2008, Semantic Web Information Management.

[127]  Ge Yu,et al.  Tick Scheduling: A Deadline Based Optimal Task Scheduling Approach for Real-Time Data Stream Systems , 2005, WAIM.

[128]  Danh Le Phuoc,et al.  A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data , 2011, SEMWEB.

[129]  Walid G. Aref,et al.  Stream window join: tracking moving objects in sensor-network databases , 2003, 15th International Conference on Scientific and Statistical Database Management, 2003..

[130]  Orri Erling,et al.  RDF Support in the Virtuoso DBMS , 2007, CSSW.

[131]  Jennifer Widom,et al.  Content-Based Routing: Different Plans for Different Data , 2005, VLDB.

[132]  Danh Le Phuoc,et al.  Linked Stream Data Processing , 2012, Reasoning Web.

[133]  Michael Eckert,et al.  A CEP Babelfish: Languages for Complex Event Processing and Querying Surveyed , 2011 .

[134]  Kyriakos Mouratidis,et al.  Continuous monitoring of top-k queries over sliding windows , 2006, SIGMOD Conference.

[135]  Nigel Shadbolt,et al.  SPARQL Query Processing with Conventional Relational Database Systems , 2005, WISE Workshops.

[136]  Theodore Johnson,et al.  Gigascope: a stream database for network applications , 2003, SIGMOD '03.

[137]  Wee Hyong Tok,et al.  Efficient and Adaptive Processing of Multiple Continuous Queries , 2002, EDBT.

[138]  Emanuele Della Valle,et al.  BOTTARI: An augmented reality mobile application to deliver personalized and location-based recommendations by continuous analysis of social media streams , 2012, J. Web Semant..

[139]  Samuel Madden,et al.  ZStream: a cost-based query processor for adaptively detecting composite events , 2009, SIGMOD Conference.

[140]  Walid G. Aref,et al.  Incremental Evaluation of Sliding-Window Queries over Data Streams , 2007, IEEE Transactions on Knowledge and Data Engineering.

[141]  Charu C. Aggarwal,et al.  gSketch: On Query Estimation in Graph Streams , 2011, Proc. VLDB Endow..

[142]  Jennifer Widom,et al.  Exploiting k-constraints to reduce memory overhead in continuous queries over data streams , 2004, TODS.

[143]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[144]  Lan Huang,et al.  Scalable trigger processing , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[145]  Yufei Tao,et al.  RPJ: producing fast join results on streams through rate-based optimization , 2005, SIGMOD '05.

[146]  Danh Le Phuoc,et al.  Challenges in Linked Stream Data Processing: A Position Paper , 2010, SSN.

[147]  Joseph M. Hellerstein,et al.  Eddies: continuously adaptive query processing , 2000, SIGMOD '00.

[148]  Jeffrey F. Naughton,et al.  Rate-based query optimization for streaming information sources , 2002, SIGMOD '02.

[149]  Walid G. Aref,et al.  Incremental Evaluation of Sliding-Window Queries over Data Streams , 2007 .

[150]  Olaf Hartig,et al.  The SPARQL Query Graph Model for Query Optimization , 2007, ESWC.

[151]  Abhinav Gupta,et al.  Optimizing Refresh of a Set of Materialized Views , 2005, VLDB.

[152]  Jae-Gil Lee,et al.  Continuous query processing in data streams using duality of data and queries , 2006, SIGMOD Conference.

[153]  Geoff Holmes,et al.  Mining frequent closed graphs on evolving data streams , 2011, KDD.

[154]  Frederick Reiss,et al.  TelegraphCQ: Continuous Dataflow Processing for an Uncertain World , 2003, CIDR.

[155]  Ciro Cattuto,et al.  Semantics, Sensors, and the Social Web: The Live Social Semantics Experiments , 2010, ESWC.

[156]  Michael J. Franklin,et al.  PSoup: a system for streaming queries over streaming data , 2003, The VLDB Journal.

[157]  Samuel Madden,et al.  Continuously adaptive continuous queries over streams , 2002, SIGMOD '02.

[158]  Sebastian Rudolph,et al.  EP-SPARQL: a unified language for event processing and stream reasoning , 2011, WWW.

[159]  Ziv Bar-Yossef,et al.  Reductions in streaming algorithms, with an application to counting triangles in graphs , 2002, SODA '02.

[160]  Rajeev Motwani,et al.  Operator scheduling in data stream systems , 2004, VLDB 2004.

[161]  Philip S. Yu,et al.  Interval query indexing for efficient stream processing , 2004, CIKM '04.

[162]  Quanzhong Li,et al.  Adaptively Reordering Joins during Query Execution , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[163]  Alisdair Owens,et al.  An Investigation into Improving RDF Store Performance , 2009 .

[164]  David Maier,et al.  Semantics and evaluation techniques for window aggregates in data streams , 2005, SIGMOD '05.

[165]  Sharma Chakravarthy,et al.  Scheduling Strategies for Processing Continuous Queries over Streams , 2004, BNCOD.

[166]  Walid G. Aref,et al.  Nile: a query processing engine for data streams , 2004, Proceedings. 20th International Conference on Data Engineering.

[167]  Jennifer Widom,et al.  A denotational semantics for continuous queries over streams and relations , 2004, SGMD.

[168]  Michael J. Franklin,et al.  Remembrance of Streams Past: Overload-Sensitive Management of Archived Streams , 2004, VLDB.

[169]  Peter Boncz,et al.  Linked Stream Data Processing: Facts and Figures , 2012, ISWC 2012.

[170]  Adam Jacobs,et al.  The pathologies of big data , 2009, Commun. ACM.

[171]  Walid G. Aref,et al.  Hash-merge join: a non-blocking join algorithm for producing fast and early join results , 2004, Proceedings. 20th International Conference on Data Engineering.

[172]  Joseph M. Hellerstein,et al.  The Case for Precision Sharing , 2004, VLDB.

[173]  Jeffrey F. Naughton,et al.  Evaluating window joins over unbounded streams , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[174]  Michael J. Franklin,et al.  On-the-fly sharing for streamed aggregation , 2006, SIGMOD Conference.

[175]  Walid G. Aref,et al.  Scheduling for shared window joins over data streams , 2003, VLDB.

[176]  E. Prud hommeaux,et al.  SPARQL query language for RDF , 2011 .

[177]  Colin J. Fidge,et al.  Logical time in distributed computing systems , 1991, Computer.

[178]  Douglas Comer,et al.  Ubiquitous B-Tree , 1979, CSUR.

[179]  Alan R. Simon,et al.  Sql: 1999 Understanding Relational Language Components , 2002 .