Automatic and a priori refinement of three-dimensional meshes based on feature recognition techniques

Abstract This work presents the general evolution of CAD/CAM systems for a better integration of all functions involved in the design and manufacturing process of mechanical parts (simultaneous engineering). We are proposing here an approach of the automatic three-dimensional mesh generation problem featuring a pre-optimization scheme based on the “a priori” evaluation of a dual geometric model (CSG–Exact B-Rep) in order to identify, directly and automatically, geometric features causing stress concentration. We provide more precise knowledge on how geometric features are identified and used in order to calculate a nodal density field across the parts that is more interesting for analysis or representation purposes.

[1]  Mark S. Shephard,et al.  Trends in automatic three-dimensional mesh generation , 1988 .

[2]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[3]  J. Z. Zhu,et al.  The finite element method , 1977 .

[4]  Pierre Ladevèze,et al.  Mesh optimization for problems with steep gradients , 1994 .

[5]  Roland Maranzana Intégration des fonctions de conception et de fabrication autour d'une base de données relationnelle , 1988 .

[6]  Jami J. Shah Assessment of features technology , 1991, Comput. Aided Des..

[7]  Klaus-Jürgen Bathe,et al.  On automatic mesh construction and mesh refinement in finite element analysis , 1989 .

[8]  W. A. Carter Advances in computer-aided manufacture: D McPherson (ed), North-Holland (1977), 468pp, $44.95 , 1978 .

[9]  S. Mukherjee,et al.  Boundary element techniques: Theory and applications in engineering , 1984 .

[10]  Paul-Louis George,et al.  Génération automatique de maillages : applications aux méthodes d'éléments finis , 1991 .

[11]  Roland Maranzana,et al.  A direct approach to automatic three-dimensional finite element mesh refinement , 1992 .

[12]  Zen Chen,et al.  Automatic 3D machining feature extraction from 3D CSG solid input , 1990, Comput. Aided Des..

[13]  T. C. Chang,et al.  Graph-based heuristics for recognition of machined features from a 3D solid model , 1988 .

[14]  Jean-Christophe Cuillière An adaptive method for the automatic triangulation of 3D parametric surfaces , 1998, Comput. Aided Des..

[15]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[16]  Jean-Christophe Cuillière Pré-optimisation de maillages automatiques tridimensionnels pour les méthodes numériques : application à l'ingénierie simultanée , 1993 .

[17]  William H. Frey,et al.  An apporach to automatic three‐dimensional finite element mesh generation , 1985 .

[18]  H. Voelcker,et al.  Solid modeling: current status and research directions , 1983, IEEE Computer Graphics and Applications.

[19]  O. Zienkiewicz,et al.  Finite element Euler computations in three dimensions , 1988 .

[20]  Ibrahim Zeid,et al.  CAD/CAM theory and practice , 1991 .

[21]  W. Eversheim,et al.  Survey of Computer-Aided Process Planning Systems , 1982 .

[22]  Norihiro Nakajima,et al.  Feature-based heuristics for finite-element meshing using quadtrees and octrees , 1992, Comput. Aided Des..

[23]  David C. Gossard,et al.  Recognizing shape features in solid models , 1990, IEEE Computer Graphics and Applications.